
Real-Time Water Animation and Rendering
using Wavefront Parameter Interpolation
Master’s thesis in Complex Adaptive Systems

Gustav Olsson

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden 2017





Master’s thesis 2017

Real-Time Water Animation and Rendering using
Wavefront Parameter Interpolation

Gustav Olsson

Department of Computer Science and Engineering
Computer Graphics Research Group

Chalmers University of Technology
Gothenburg, Sweden 2017



Real-Time Water Animation and Rendering using Wavefront Parameter Interpolation
Gustav Olsson

c© Gustav Olsson, 2017.

Supervisor: Erik Sintorn, Department of Computer Science and Engineering
Advisor: Fredrik Larsson and Jan Schmid, DICE
Examiner: Ulf Assarsson, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Computer Graphics Research Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Water waves refract around a natural jetty in a virtual depiction of the
Mediterranean coast implemented in the Frostbite [2017] game engine. The water
is simulated and rendered using the presented algorithm.

Typeset in LATEX
Gothenburg, Sweden 2017

iv



Real-Time Water Animation and Rendering using Wavefront Parameter Interpolation

Gustav Olsson

Department of Computer Science and Engineering

Chalmers University of Technology

Abstract

Realistic simulation and rendering of water is a challenge within the field of computer
graphics because of its inherent multi-scale nature. When observing a large body
of water such as the sea, there are small waves and perturbations visible close to
the observer. As the distance increases, the small scale details form large scale wave
patterns that may be several kilometers away.

A common approach to rendering large bodies of water in real-time is to simulate
deep water waves in a small area and repeat the wave motions across the water
surface at different spatial scales in order to minimize repetition patterns. This
method gives excellent results at open sea but cannot react to changes in water
depth or the terrain of the virtual scene.

In this thesis, an algorithm for rendering large expanses of water that interact with
the terrain of the virtual scene in real-time is presented. The proposed algorithm first
simulates water waves in a pre-computation step and saves wavefront parameters
on a coarse triangle mesh as proposed by Jeschke and Wojtan [2015]. Then, the
stored simulation is evaluated and the water surface is rendered in real-time using a
novel staggered update scheme. The staggered update scheme effectively improves
the rendering performance by a factor of 8 and makes it possible to render water
surfaces of up to 16 square kilometers with excellent visual quality and wave patterns
at multiple spatial scales.

Keywords: computer graphics, water, ocean, wave, wavefront, terrain, wavefront parame-

ter interpolation, simulation, rendering, staggering
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1 Introduction

1.1 Background

As computers are increasingly being used to model the world, the importance of
computer graphics as a visualization tool increases. Rendering believable virtual
scenes is important for any application that depicts the world in some way. In
addition to being esthetically pleasing, a visualization provides intuition about the
phenomenon under observation.

As water is abundant on Earth, there exists a need to render bodies of water in
virtual scenes. For outdoor scenes, one would like to capture the grand scale of water
behaviors present in everything from the open ocean and coastal areas to rivers and
small lakes. In addition, one would like the transition between these areas to be
natural and without seams.

Realistic simulation and rendering of water within the field of computer graphics is
a difficult task. For real-time applications such as computer games or visualization
software, a balance between realism and performance has to be made where the
result is convincing to an observer while at the same time allowing for interactive
frame rates (30-60 Hz). Graphical simulations of large expanses of water typically
restrict the simulation to 2 dimensions (a top-down view) and model deep water
waves on the water surface using linear wave theory [Airy, 1841] (also known as
Airy wave theory). In linear wave theory, a water wave is represented by its phase,
amplitude, angular frequency and wavenumber and the water surface is assumed to
be a sum of waves evaluated as sinusoidal functions.

In order to render an ocean, one simplifies the model by assuming that all waves
are deep water waves that travel with constant speed independent of water depth.
The Fast Fourier Transform is then used to generate and evolve a height map that
offsets the geometry of the water surface to approximate the ocean [Tessendorf,
2001]. To achieve real-time performance, several small height maps are typically
tiled across a large expanse of the ocean. The height maps are layered on top
of each other at different spatial scales in order to minimize repetition patterns.
This approach is excellent at capturing wind-driven deep water waves but is limited
when it comes to other types of waves. In particular, the major downside with this
approach is that the water simulation can not interact naturally with coastlines or
objects that are submerged in the water, nor react to changes in water depth.

In reality, water waves refract when they move from one depth to another in the
same way light refracts as it moves from one medium to another. The reason water
waves refract is that the speed of any point along a wave depends on the depth of the
water at that location. If the speed of points along the wave crest diverge, the wave
refracts and the wave crest bends. Thus, the crest curves of water waves typically
bend towards areas of shallow waters since that is where the speed is low. In addition
to refraction, water waves reflect when they collide with hard surfaces such as cliffs
or stones that are submerged in the water. The reflecting waves superimpose on top
of the ambient waves and cause ripples on the water surface that are sometimes as
important to the appearance of coastal scenes as ambient wind-driven waves.

Thus, the natural next step towards increased realism is to take the terrain of the
virtual scene into account when simulating the water.
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1.2 Purpose

The aim of this thesis is to develop an algorithm for simulating and rendering large
expanses of water that interact with the terrain of the virtual scene. Furthermore,
the algorithm must allow rendering of the water surface in real-time on current
graphics hardware.

1.3 Problem Statement

The thesis will determine how to:

1. Robustly simulate waves that react to the terrain in a variety of different
virtual scenes

2. Render the simulation in real-time on current graphics hardware while main-
taining excellent visual quality

Robustly simulate waves that react to the terrain in a variety of different virtual
scenes The proposed algorithm will be used in a production environment where
there are high demands on the stability and predictability of the simulation. The
simulation should not just produce accurate results for one or two example scenes, it
must perform reliably across a wide range of possible inputs crafted by artists with
little knowledge of the inner workings of the algorithm.

Render the simulation in real-time on current graphics hardware while maintain-
ing excellent visual quality Within the field of computer graphics, performance
and visual quality are tightly coupled and the proposed algorithm for rendering the
ocean needs to strike a balance between the two. The rendering of the simulation
must reach a frame rate of at least 60 Hz in order for the proposed algorithm to
be usable in practice. In addition, the visual quality of a rendered frame must be
excellent with no visible aliasing or noise.

1.4 Limitations

The scope of the thesis is limited to the animation of waves on the water surface
and the basic rendering of the water surface geometry.

While there are numerous aspects that need to be considered when making virtual
water believable, the intention is not to write a thorough dissertation on all of them.
In order to facilitate pre-computation of the simulation, the terrain of the virtual
scene with which the waves interact is considered static and the effects of dynamic
objects submerged in the water are omitted. Non-linear effects of water waves such
as breaking waves and consequently foam and spray are not considered. Finally, the
way light interacts with the volume of water and how it affects the shading of the
water surface is not considered.
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2 Previous Work

Water surface rendering Bruneton et al. [2010] show how to accurately illumi-
nate and render the ocean at all scales in real-time. Aliasing is eliminated using
a hierarchical representation that combines surface geometry, normals and BRDF
in order to sample waves at the appropriate level of detail, respecting the Nyquist
limit.

There are several ways of constructing the geometry of the water surface. Kry-
achko [2005] use a simple radial grid mesh centered around the camera and sample
the wave function at each vertex. The radial grid is densely sampled at the center
and becomes gradually more sparse as the distance from the camera increases. Jo-
hanson and Lejdfors [2004] introduce the concept of a projected grid to achieve a
uniform resolution of vertices in screen space. A rectangular grid is constructed in
screen space and projected from the camera onto the water plane. Each projected
vertex is then used to sample the water surface, yielding samples of even spacing in
screen space and non-linear spacing in world space.

In order to offset the water surface, several authors turn to trochoid wave profiles
[Tessendorf, 2001, Finch, 2004, Bruneton et al., 2010] originally discovered by Ger-
stner [1809]. A trochoidal wave is an exact solution to the Euler fluid equations for
deep water gravity waves [Bruneton et al., 2010] where fluid parcels move in closed
circles.

Waves in homogenous media Tessendorf [2001] show how deep water waves can
be evolved in the Fourier domain in order to generate realistic height and normal
maps of the water surface. With the advent of programmable graphics hardware,
their research has become the current state of the art for real-time water animation
and rendering of large expanses of water.

Waves in heterogeneous media Waves propagating in heterogeneous media are
studied extensively in many areas of research and several simulation schemes for
wave propagation have been developed. Rawlinson et al. [2008] provides a detailed
review of existing simulation schemes in the context of seismology. For a more
general overview, see Runborg [2007].

Fournier and Reeves [1986] and Peachey [1986] were the first to show how wave
refraction close to shores can be achieved by varying the phase speed of waves. They
use the concept of a ”wave train” and a ”wave component”, respectively, to describe
a wave with a particular angular frequency, amplitude and propagation direction.
The phase of each point along the wave is numerically integrated along a straight
line path in the direction of propagation to produce a grid of phase values. The grids
are then used during rendering to evaluate the surface height of the water at any
location in the world. These models capture wave refraction but are limited as the
propagation direction of a wave is held constant and only first-arrivals are accounted
for, i.e., only a single value of the multi-valued phase function is computed.

Ts’o and Barsky [1987] introduce the concept of ”wave-tracing” and let the prop-
agation direction of a point on the wave change according to Snell’s law. The wave-
tracing scheme is analogous to ray-tracing for arrival time computations within the
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field of geometrical optics and seismology and conventional ray-tracing for light that
is used for image generation in Computer Graphics. For rendering, wave heights are
evaluated and stored on a regular grid as rays pass close to the grid points. This
method allows for refraction and sharp changes in propagation direction in addition
to multiple arrivals of a wave, i.e., many values of the multi-valued phase function
are captured. However, in areas where rays diverge, there will be insufficient ray
coverage and the method will produce patches of undisturbed water on the surface.

Gonzato and Le Saëc [1997] improve on the work of Ts’o and Barsky [1987] by
treating the wave as a wavefront and achieve a nearly constant spatial resolution of
rays across the water surface by subdividing and collapsing neighboring rays. This
propagation scheme is known as wavefront construction in physical space within
the wavefront tracking literature and was originally proposed by Vinje et al. [1993].
Gonzato and Le Saëc [2000] extend their method to capture wave reflection and
diffraction and render the water surface by ray-tracing the wavefronts stored at
regular time intervals.

In order to reduce the memory requirements of previous methods, Jeschke and
Wojtan [2015] propose a two-dimensional unstructured coarse triangle mesh as a
means to store the recorded wave data. Reconstruction of the stored wave data
is handled through a novel interpolation scheme that sidesteps the Nyquist limit
and allows high-frequency waves to be captured even by a loosely tessellated coarse
mesh. The coarse mesh is spatially adaptive and constructed by first generating
a point-set covering the water domain using Poisson disk sampling with the disk
radius varying with the distance to the seabed boundary and then constructing the
Delaunay triangulation of these points.

In order to interpolate wave data in wavefront construction schemes, inverse bi-
linear interpolation must be used. Quilez [2010] describes a simple algorithm for
computing the inverse bilinear interpolation of a set of four points.

Osher et al. [2002] introduce the concept of a bicharacteristic strip in reduced
phase space in order to solve for the multi-valued phase function using a level set
approach within the field of geometric optics. A self-intersecting wavefront in world
space becomes a non-self-intersecting curve in reduced phase space that is known as
the bicharacteristic strip. Hauser et al. [2006] compare an Eulerian and a Lagrangian
approach to solving the multi-valued phase function and show how the resolution of
Lagrangian wavefronts can be maintained in reduced phase space.

Mesh generation Cook [1986] introduced Poisson disk sampling in the field of
Computer Graphics and showed how it can be used to reduce aliasing. Bridson
[2007] developed a linear-time algorithm for Poisson disk sampling in arbitrary di-
mensions. Poisson disk sampling can be extended to use variable radii and proofs
on the properties of the resulting point-set and subsequent Delaunay triangulation
can be made [Mitchell et al., 2012].

The Delaunay triangulation and its dual, the Voronoi diagram, have been studied
extensively within the field of Computational Geometry and Computer Graphics
and Aurenhammer [1991] provides a thorough dissertation on the subject. Incre-
mental flipping is a common algorithm for constructing the Delaunay triangulation
from a set of points that is proven to work in arbitrary dimensions [Edelsbrunner
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and Shah, 1992]. Brown [1979] first showed that there is a relationship between
n-dimensional Voronoi diagrams and n+1-dimensional convex hulls through a stere-
ographic projection. Edelsbrunner and Seidel [1985] built upon Brown’s work and
showed that the Delaunay triangulation of an n-dimensional point-set is equivalent
to an orthographic projection of the triangles of the convex hull of the points lifted
to a n+1-dimensional parabola.

The convex hull is an important concept within the field of Computational Ge-
ometry. In addition to being closely related to other important concepts such as the
Delaunay triangulation and the Minkowski set, convex hulls can be used to simplify
complex problems. Gilbert et al. [1988] showed that convex hulls and the Minkowski
set can be used for fast intersection and distance calculations between complex ob-
jects. There are numerous algorithms for computing the convex hull of a point-set.
Barber et al. [1996] developed an iterative algorithm that works in arbitrary di-
mensions and has seen widespread adoption but is susceptible to precision errors
when the input is not in general position. Gustafsson [2013] proposes a promis-
ing topology-based algorithm that is robust against inputs not in general position.
This algorithm for generating three-dimensional convex hulls seems to be related to
incremental flipping for constructing the two-dimensional Delaunay triangulation.

See Ericson [2004] for a comprehensive summary of geometric concepts in the field
of Computer Graphics.

Ocean wave spectra In oceanic research, one is interested in the shape of the sea
surface in different weather conditions and several ocean wave spectra have been
developed to describe the state of the ocean given different parameters such as wind
speed or fetch. Pierson and Moskowitz [1964] experimentally find a spectrum for
fully developed seas which gives the energy density of the sea as a function of angular
frequency and wind speed.
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3 Theory

The next section will introduce the theory necessary to follow the reasoning in
subsequent sections.

3.1 Linear Wave Theory

Linear wave theory is a linear model for surface waves on a body of water. It was
first formulated by George Bidell Airy in the 19th century [Airy, 1841] and is also
commonly known as Airy wave theory.

The model states that the water surface can be approximated by a sum of sinu-
soidal functions:

η(~x, t) = η0 +
N∑
i=1

ai sin(ωiφi(~x)− ωit) (1)

where η(~x, t) is the water height at point ~x at time t, n0 a constant offset, N the
number of waves and ai, ωi, φi the amplitude, angular frequency and phase function
of the i :th wave [Jeschke and Wojtan, 2015].

An important realisation is that two waves with the same angular frequency,
oscillating at the same rate, can be different due to the phase function. Consider
a stationary world space point. Two waves, with the same angular frequency, pass
through the point (the point travels the length of an entire wave period) in the
same amount of time but the lateral speed at which they pass may be different. If
wave A travels much faster than wave B, wave A will seem stretched out in relation.
On the other hand, if wave A travels much slower than wave B, wave A will seem
compressed. Thus, for a wave, one can say that the angular frequency denotes the
temporal rate of the oscillations and the phase function denotes the spatial rate of
repetition. See Figure 1 for an illustration of this concept.
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Figure 1: An illustration of two waves with the same angular frequency, ω1 = ω2 =
2π, but different phase functions, φ1(x) = x and φ2(x) = 2

3
x. While both

waves travel through a stationary world space point (denoted by the red
dot) in the same amount of time, the phase speed of wave 2 is higher than
that of wave 1.

The phase speed, ci, of a wave is the spatial rate at which a point on the wave,
say the crest, travels through the world under the high frequency approximation. It
is given by the following equation:

ci =
ωi

ki
(2)

where ki is the wavenumber of the i :th wave [Jeschke and Wojtan, 2015]. The
wavenumber denotes the number of times a wave repeats itself in one spatial unit.
It is related to the wavelength, λi, the spatial extent of a wave period, by ki = 2π/λi.

The angular frequency, ωi, and the wavenumber, ki, of a wave are connected by
the dispersion relation:

ωi =

√
(gki +

σ

ρ
k3
i ) tanh(kih|~x) (3)

where g is the gravity constant, σ the surface tension, ρ the density of the wa-
ter and h|~x the water depth at ~x [Jeschke and Wojtan, 2015]. This equation is an
important part of water behavior. It states the relationship between angular fre-
quency, wavenumber and water depth. As the angular frequency remains constant
throughout a wave’s lifetime [Peachey, 1986, Jeschke and Wojtan, 2015], the relation
shows how the wavenumber (and consequently the wavelength) changes with water
depth. For a given water depth, a wave with high angular frequency will have a high
wavenumber and a wave with low angular frequency will have a low wavenumber.
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This is intuitive as in real-life, waves with short wavelengths tend to oscillate quickly
whereas waves with long wavelengths tend to oscillate slowly.

Using the dispersion relation, one may express the phase speed ci as a function of
ωi, ki and h|~x:

ci =
ωi

ki
=

√
(
g

ki
+
σ

ρ
ki) tanh(kih|~x) (4)

In this form, it can be seen that the phase speed, i.e., the speed at which a wave
propagates, tends to infinity both as ki → 0 and ki → ∞, and increases with the
depth of the water. In addition, the phase speed is almost independent of water
depth for capillary waves (large ki) and deep water waves (large h|~x) as tanh ≈ 1.

Under the high frequency approximation, a wave propagates according to the
Eikonal equation,

|∇φ| = 1

c
, (5)

and travels through space with phase speed c [Jeschke and Wojtan, 2015]. The
difference in phase between two world space points is then the time it takes for the
wave to travel between the points. The high frequency approximation is formally
valid in the limit when the angular frequency of a wave tends to infinity [Runborg,
2007] and it is a good approximation when the wavelength is small compared to
features of the boundary domain. In particular, under the high frequency approxi-
mation, a point on a wave travels in a straight line in homogeneous media and waves
do not diffract when grazing obstacles. Rawlinson et al. [2008] show the derivation
of the Eikonal equation from the elastic wave equation.

When water depth is constant, the phase speed is constant and thus the phase of
a wave is a linear function of distance, φi(x) = x/ci = kix/ωi, and the water surface
is a sum of plane waves:

η(~x, t) = η0 +
N∑
i=1

ai sin(~ki · ~x− ωit)

where the wave vector ~ki denotes the direction of propagation with
∣∣∣~ki∣∣∣ = ki.

However, when the water depth and consequently the phase speed is not constant,
the phase function is non-linear and often multi-valued [Jeschke and Wojtan, 2015].

The energy density Di of wave i is given by:

Di =
(ρg + σk2

i )a2
i

2
. (6)

Finally, energy propagates at the rate of the group speed :

cg =
dω

dk
. (7)
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3.2 The Wavefront

It is straightforward to describe the motion of water waves using linear wave theory
for water of uniform depth, as the waves travel at constant phase speed and can be
described by plane waves. However, when the seafloor is heterogeneous in depth,
the wavenumber and consequently the phase speed of a wave will vary according to
the dispersion relation.

When viewing a water wave travelling in a heterogeneous depth field from above,
different points on the wave will travel at different speeds and it is convenient to
introduce the concept of a wavefront. A wavefront is the set of points of constant
phase away from a source. The points form a curve in R2.

As different points along a wavefront travel at different speeds, the wavefront
bends towards areas of lower speeds. This is what makes ocean waves that travel
chaotically at sea line up with the coastline as they approach shallow waters.

An initially straight wavefront may bend, stretch and even fold over itself as
it travels across the water surface. In practice, a wavefront will develop self-
intersections even in a simple underlying depth field. An example of this is the
swallowtail pattern that appears when a straight wavefront enters a circular area of
gradually slower speeds and bends over itself [Hauser et al., 2006]. See Figure 2 for
an illustration of this phenomenon.

Figure 2: A wavefront forms a swallowtail pattern as it passes over a local low speed
area. Multiple time steps of the wavefront are shown transitioning from
green to red with increasing phase.

The observation that a wavefront can pass over a world space point multiple times
in a heterogeneous depth field provides intuition behind the multi-valued nature of
the phase function. Each value of the phase function at a world space point describes
a time the wavefront moved passed the point.
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4 Method

The algorithm for animating and rendering the water surface was developed using
research in the field of computer graphics and oceanography as reference. The thesis
covers the subset of the accomplished work that is relevant according to the problem
statement.

The thesis project was carried out at the video game development company DICE
[2017] in Stockholm, Sweden, and the algorithm was integrated into their in-house
game engine, Frostbite [2017].

4.1 Overview

The proposed algorithm for generating and rendering the ocean consists of two
steps: the simulation step and the rendering step. The simulation step is based
on the novel approach to wavefront construction developed by Jeschke and Wojtan
[2015] in which wavefronts are propagated across a virtual scene and wave parame-
ters are recorded as they pass over the triangles of a coarse 2-dimensional triangle
mesh (coarse mesh) covering the ocean surface. The rendering step generates the
geometrical displacement and normals necessary to accurately render the ocean sur-
face by sampling the recorded wave parameters stored on the coarse mesh. In order
to render the ocean at any spatial scale and provide a seamless transition between
different levels of detail, individual waves are filtered by wavelength as shown by
Bruneton et al. [2010].

As propagating a large number of wavefronts across a virtual scene is computa-
tionally expensive, the simulation is a pre-computation step typically triggered by an
artist during the content authoring process. This makes it possible to use advanced
models in the simulation without taking into account the quality/performance bal-
ance otherwise constantly present in real-time graphics. In contrast, performance is
crucial in the rendering step since it is triggered each frame of the animation and
interactive frame rates are required. In practice, the simulation step is several orders
of magnitude slower than the rendering step.
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4.2 Simulation

The next section will describe in detail how the simulation is designed to generate,
propagate and record wavefronts across any virtual scene. As there are many com-
plex steps involved, the focus will be on the robustness of the presented solutions.

4.2.1 World Representation

As the purpose of this thesis is to develop a water system that reacts to the envi-
ronment in a believable manner, the simulation step must have the ability to query
the virtual scene in which the water is part of. Since the equations of motion for a
wave depends on the water depth, the simulation must be able to query the water
depth at any world space location. Additionally, the ability to determine where a
line segment intersects any solid object in the scene, a so called line-cast, is required
to handle wavefront reflection.

In order to limit the scope of the implementation, only the height map of the
terrain is considered when a query is performed. This is a reasonable limitation
as the terrain is what is used to represent the majority of solid mass in a scene.
When a query is performed, the height map is sampled at a specified world space
resolution using bi-cubic interpolation. The depth is computed by subtracting the
terrain height sample from the y-coordinate of the water surface at the requested
location. The line-cast query uses binary search along the line segment to pinpoint
the exact point of intersection, if any.

The independent world space sampling resolution makes it possible to ignore high
frequency details in the terrain and the bi-cubic interpolation scheme guarantees
a continuous depth function value and gradient. These properties are crucial in
order to achieve a good looking simulation as the stability of the simulation greatly
depends on the smoothness of the depth field with respect to the the integration
scheme used to propagate the wavefronts.

4.2.2 Coarse Mesh Generation

A two-dimensional coarse triangle mesh was chosen to be the shared medium be-
tween the simulation step and the rendering step as proposed by Jeschke and Wojtan
[2015].

When linear interpolation is used to interpolate the wave data from each coarse
mesh triangle vertex, only wavefronts that travel in a straight line can be accurately
captured. Higher order interpolation schemes are able to capture more detail but
since the wave data is only recorded at the vertices of the triangle, there is a limit
to what wavefront behavior can be captured inside of the triangle boundary. In
order to capture as much as possible of the wavefront behavior, several triangles are
combined into a coarse mesh that span the surface of the water volume.

The coarse mesh is adaptively tessellated to conform to the terrain of a scene
to take advantage of the fact that different regions give rise to different wavefront
behavior. As wavefronts tend to refract and reflect around shores, the coarse mesh
must be well tessellated around the shoreline. Similarly, as initially straight wave-
fronts tend to remain straight as they travel in deep water, the coarse mesh can be
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loosely tessellated in these regions without loss of quality.
See Figure 3 for a visual representation of the coarse mesh of an example scene.

Note that the visual representation is only used for debugging purposes and is not
rendered in practice.

Figure 3: A visual representation of the coarse mesh (black triangles) for an exam-
ple scene (white terrain) generated using the method described in section
4.2.2. Note how the sampling approach maintains a high density of vertices
along the shoreline while not over-sampling the region of flat bottomed
shallow water in between the islands.

To generate the coarse mesh for a given scene, a set of vertices are first generated
using Poisson disk sampling [Cook, 1986]. Secondly, the Delaunay triangulation
[Aurenhammer, 1991] of the set of vertices is found using the concept of convex
hulls [Ericson, 2004]. Finally, unwanted triangles are removed and the remaining
vertices and triangles are taken as the coarse mesh.

Poisson Disk Sampling In theory, any sampling scheme could be used to generate
the vertices of the coarse mesh that spans across the scene. However, since high
vertex density is preferred close to shores and low vertex density is preferred in deep
water, Poisson disk sampling was chosen to generate the vertices.

In a Poisson disk distribution, any sample is located at least a minimum distance
r apart from any other sample. By varying the minimum radius r using a depth-
dependent function, it is possible to have different vertex densities in different parts
of a scene.

To generate the Poisson disk sampling, the two-dimensional version of the algo-
rithm proposed by Bridson [2007] was implemented and extended to support spa-
tially varying radii. The Smaller-disks sizing function was used in order to achieve
full coverage of the water surface [Mitchell et al., 2012]. In order for the algorithm
to produce triangles of reasonable size given any radius function, the radius from
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the function is clamped so that it lies within a fixed range [rmin, rmax]. Clamping
the radius in this manner also lets the algorithm terminate in a reasonable amount
of time.

Bridson’s algorithm takes the extents of the sample domain and the minimum
radius r as parameters and produces a Poisson disk sampling in linear time. First, a
background grid with cell size equal to r/

√
2 is initialized to accelerate neighborhood

searches. An initial sample is randomly picked from the sample domain and inserted
into the background grid and into an active list. While the active list is not empty,
a random point p is picked from it and k new candidate points are generated in
a circular annulus between r and 2r around p. For each candidate point, the 9
neighboring background grid cells are checked for a potential overlap with an existing
sample. If a candidate point does not violate the circular area of radius r around
any existing sample, the candidate becomes a new sample and is added to the
background grid and active list. In practice, k = 30 worked well.

The algorithm was extended to support spatially varying radii by introducing
a radius function r = f(~x). The background grid must now have a cell size of
rmin/

√
2 to avoid conflicts. The Smaller-disks sizing function accepts a candidate

point if the distance between it and any existing sample is less than the minimum
of f(candidate point) and f(sample point)).

The obvious problem with this extension is that the worst case number of neigh-
boring background grid cells to check increases dramatically. However, it did not
prove to be a problem in practice.

Next, the radius function must be chosen. If the radius function is made propor-
tional to the water depth h, the density of the generated points will increase as the
depth decreases:

r = k |h| ,

where k is a user defined constant. Negative depth values occur where the terrain
of the scene is above the water surface and taking the absolute value makes the
sampling symmetric with respect to the shoreline. Coarse mesh vertices are needed
on both sides of the shoreline in order for coarse mesh triangles to cover the space
up to the very start of the terrain. Choosing k = 1 is reasonable and will produce
points approximately 1 unit apart at a depth of 1 unit. A problem with this sampling
approach is that it generates too many points in large areas of shallow water where
the seabed is nearly flat. Since a low number of coarse mesh triangles is critical for
performance in the rendering step, the sampling approach must be improved.

The observation that an initially straight wavefront will remain straight when it
travels in an area of uniform depth can be used to construct a sampling in a similar
way: The radius function can be made proportional to the inverse length of the
gradient at the candidate point:

r =
k

max(ε, |∇h|)
,

where ε is a small number that determines the size of the largest triangle and
prevents division by zero. With this approach, it is important that the underlying
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depth field is smooth and does not contain too high-frequency features. In practice,
this is achieved by the relatively sparse terrain representation described in 4.2.1.
This sampling approach eliminates the high point density in shallow waters where
the seabed is nearly flat but it also disregards the shoreline and nearly flat bottomed
shores are sampled sparsely. Shores need to be sampled densely no matter the
gradient in order for the simulation to accurately capture wave reflections. Thus,
the sampling approach needs to be improved further.

A good radius function was achieved by combining the two sampling approaches
into one:

r =
k |h|

max(ε, |∇h|)

With this sampling approach, shores are sampled densely and flat bottomed shal-
low waters are sampled sparsely, as desired (See Figure 3). In practice, k = 1 and
ε = 0.1 was found to be suitable for scenes where 1 world unit corresponds to 1
meter.

Delaunay Triangulation In order to create the coarse mesh triangles, the Delaunay
triangulation of the coarse mesh vertices is computed. The Delaunay triangulation
maximizes the minimum interior angle of all triangles in the triangulation.

The method chosen to compute the Delaunay triangulation takes advantage of
the fact that there is a connection between the Delaunay triangulation of a set
n-dimensional points and the convex hull of the set of points lifted to a n+1-
dimensional parabola [Edelsbrunner and Seidel, 1985]. First, the set of 2-dimensional
coarse mesh vertices are lifted to a 3-dimensional parabola where the third coordi-
nate is taken as the squared distance to the origin:

~p =
(
vx vy v2

x + v2
y

)T
.

Intuitively, one can think of the points as being placed on the bottom surface of a
bowl that extends upwards in the positive z-direction and that is placed on a table
made up of the x and y axis. Next, the convex hull of the set of 3-dimensional points
is computed. Finally, only the triangles of the convex hull that can be seen from
an observer at z = −∞ looking in the positive z-direction are kept, i.e., triangles
whose normals ~n fulfill nz < 0. The 3-dimensional triangles are then projected onto
the original two-dimensional plane by discarding the z-coordinate. This procedure
yields the sought after closest-point Delaunay triangulation of the original point set
[Edelsbrunner and Seidel, 1985].

By transforming the problem in this way, the focus is shifted from implementing a
robust two-dimensional Delaunay triangulation algorithm to implementing a robust
three-dimensional convex hull generation algorithm.

Convex Hull Generation To construct the convex hull of the lifted set of points
in three dimensions, the algorithm proposed by Gustafsson [2013] was implemented.
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The algorithm was chosen over other more widespread algorithms because of its
simplicity and promising inherent robustness. As the algorithm is topology-based,
it will always produce a two-manifold mesh where every edge belongs to exactly
two triangles as long as it terminates. However, the algorithm is not guaranteed to
terminate due to the limited precision of floating point numbers. Since termination
is crucial in a production environment, the algorithm was extended and made robust
at the cost of performance.

Gustafsson’s algorithm is inspired by support mapping methods such as the
Gilbert-Johnson-Keerthi (GJK) algorithm [Gilbert et al., 1988] in that it uses a

support function to incrementally build the convex hull. Given any direction ~d, the
support function returns the point in the set that lies furthest in that direction, i.e.,
the point ~pi for which ~pi · ~d = max(~p1 · ~d, ~p2 · ~d, . . . , ~pn · ~d) holds. From this follows
that any point returned by the support function lies on the surface of the convex
hull of the point-set.

The algorithm starts by using the support function to construct an initial convex
hull consisting of two oppositely oriented triangles from 3 points. The rest of the
points in the input set are added to a remaining point set. In each iteration of
the algorithm, a triangle is picked from the convex hull and the support function
is queried for the point ~pnew in the remaining point set that lies furthest along the
triangle normal. If ~pnew lies in front of the triangle, the triangle is replaced by 3 new
triangles that connect the edges of the original triangle and ~pnew. The point ~pnew

is then removed from the remaining point set. This expansion step may cause the
hull to become concave and the expansion step is followed by an unfolding step that
enforces convexity. In the unfolding step, any two triangles that share a concave edge
rotate the 4 point indices so that the shared edge is flipped and rendered convex.
See Figure 4 for an illustration. A concave edge is an edge where the angle between
its two triangles is less than π radians. Since an edge flip might render neighboring
edges concave, the procedure is repeated until all edges are convex. Flipping a
concave edge increases the volume of the hull and since the volume can not increase
indefinitely, the unfolding step must terminate in theory. Finally, the algorithm
terminates when no triangle on the convex hull can be expanded further.
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Figure 4: A concave edge is flipped by rotating the 4 point indices of the two con-
nected triangles in the unfolding step of the convex hull generation al-
gorithm. The edge is considered concave when the angle α between the
triangles that share the edge is less than π radians. As seen in the figure,
a flip renders a concave edge convex.

In practice, the limited precision of floating point numbers might cause the un-
folding step to cycle through a set of flips indefinitely. Indefinite cycling might occur
whenever the concavity tests for a series of edges do not agree about the convexity
of the hull and the same edges are repeatedly flipped in some cycle. However, the
exact same edge that is part of the exact same two triangles should not be flipped
twice as this will undo the work of the first flip. To make the algorithm robust, the
first flip is assumed to be correct and a flip hash set is used to store the 4 vertices
associated with each performed flip. At the start of the unfolding step, the flip hash
set is initialized to the zero set. Then, whenever a flip is about to be performed, it
is first checked against the flip hash set. If there is a match and the flip is about
to undo the work of a previous flip, the flip is skipped. If not, the concavity test is
assumed to be correct and the flip is performed and added to the flip hash set. As
there is a finite number of possible flips, the extension will allow termination of the
unfolding step and make the algorithm robust against precision errors. In practice,
the high number of possible flips was not a problem and the algorithm successfully
terminated in a reasonable amount of time even for very large scenes with large
variations in triangle size.

Removal of Hidden Triangles In most scenes, some of the generated triangles of
the coarse mesh will lie completely below the terrain of the world. As no water will
be visible in these areas, it is unnecessary to store wave data on the triangles.

In order to save memory, the unnecessary triangles are removed from the coarse
mesh in a post-processing step. First, all vertices of the coarse mesh that lie be-
low the terrain are marked as invisible. Then, all coarse mesh triangles that are
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connected to only invisible vertices are removed. This simple procedure might re-
move partly visible triangles in theory. However, as long as the shoreline was well
tessellated it did not prove to be a problem in practice.

4.2.3 Wavefront Generation

In order for the simulation of the water to be realistic and at the same time allow
for artistic control, a flexible system for generating wavefronts must be in place. A
single virtual scene may contain many different settings in which water should be
present. There should be large ocean waves at open sea, less violent waves in bays
and calm water in canals further inland. There might be waterfalls as a result of
drops in elevation or man-made construction such as dams. To capture these design
goals, the system provides a set of wavefront generators that can be placed in a
scene and allow artists to tailor the scene to their vision.

All wavefront generators let the user specify a minimum and maximum angular
frequency range that the wavefronts created from the generator will be limited to. A
generator typically creates several wavefronts and the angular frequency value used
for an individual wavefront is restricted to this range. In addition to the angular
frequency range, a maximum amplitude to wavelength ratio is specified to control
the maximum steepness of all waves that result from the generator.

Sampling the Ocean Wave Spectrum In order to avoid having an artist specify
the parameters for each wavefront manually in an open sea setting, wavefronts can be
generated by sampling an ocean wave spectrum. The Pierson-Moskowitz spectrum
[Pierson and Moskowitz, 1964] is used and extended to two dimensions using a
simple falloff function that eliminates waves perpendicular to the wind direction.
Two integer values denote the number of angular frequency samples and the number
of directional samples respectively.

In contrast to Fréchot [2006] that use an adaptive sampling scheme to finely sample
areas of high wave energy, a good range of angular frequencies is preferred when
generating wavefronts. Thus, a simple uniform sampling scheme is used. A set of
densities are computed by sampling the spectrum using a jittered regular grid in the
angular frequency/wind angle plane. When sampling the wave spectrum, the density
is discretized and converted to wave amplitude as shown by Fréchot [2006]. Then
for each sample, a wavefront is created (with the corresponding angular frequency,
propagation direction and amplitude) and spawned just outside the bounds of the
water simulation area.

Manual Placement of Wavefronts To allow fine grain control over waves in a
particular location, the system provides a planar wavefront generator and a circular
wavefront generator. The planar wavefront generator creates a number of wavefronts
that lie parallel to the x-axis and at the position of the generator entity. The circular
wavefront generator creates a number of circular wavefronts around the position of
the generator entity.

Both of these generators let the user specify a minimum and maximum energy
range and the number of wavefronts to create. The energy range must be within
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[0, 1] and denotes the amplitude from zero to maximum steepness as dictated by the
maximum amplitude to wavelength ratio. For each wavefront, an angular frequency
value is uniformly sampled from the angular frequency range and an energy value is
uniformly sampled from the energy range. Then, the amplitude of the wavefront is
determined by multiplying the initial wavelength of the wavefront with the maximum
amplitude to wavelength ratio and the sampled energy value.

4.2.4 The Wavefront

In the simulation step, a wavefront is represented by a list of n vertices and a list
of n − 1 line segments. The vertices and line segments form a curve on the water
surface and describe the current shape and location of the wavefront in world space.
The resolution of the wavefront changes as the wavefront is propagated across the
water surface [Vinje et al., 1993, Gonzato and Le Saëc, 2000, Jeschke and Wojtan,
2015] in order for the piecewise linear representation to approximate the true shape
of the wavefront even as it deforms considerably. See Table 1 for what is stored in
memory for each wavefront.

Wavefront
Property Symbol Type
Angular Frequency ω Float
Phase φ Float
Previous Phase φ′ Float
Vertices N/A Vertex[ ]
Segments N/A Segment[ ]
Covered Mesh Edges N/A MeshEdge{ }
Initial Amplitude/Wavelength Ratio N/A Float
Min Amplitude/Wavelength Ratio N/A Float
Max Amplitude/Wavelength Ratio N/A Float
Max Amplitude/Depth Ratio N/A Float

Table 1: The Wavefront Data Structure

The Angular Frequency and Phase are the parameters of the wave that are
shared across all vertices and segments of the wavefront. Waves with an ampli-
tude/wavelength ratio below Min Amplitude/Wavelength Ratio are not visible and
should be removed. As the simulation does not capture non-linear effects of wa-
ter behavior, such as breaking waves, the amplitudes of the segments are simply
clamped to lie just below the breaking point of the wave using the Max Ampli-
tude/Wavelength Ratio value. In a similar fashion, Max Amplitude/Depth Ratio is
used to clamp the amplitudes of segments that exceed the current water depth. The
Initial Amplitude/Wavelength Ratio is used to compute the initial amplitude of the
segments of a wavefront when the wavefront is manually placed within a scene as
random uniform sampling of this value gives much more believable wave profiles
than random uniform sampling of the amplitude directly. This parameter is not
used when the wavefront is generated from an ocean wave spectrum.
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The integration scheme proposed by Jeschke and Wojtan [2015] was adopted and
used to deduce the vertex and segment data structures. In addition to its current
state, each vertex and segment also stores some of its previous state so that certain
values can be interpolated between time steps when the wavefront is recorded onto
the coarse mesh. See Table 2 and Table 3 for what is stored in memory for each
vertex and each segment respectively.

Vertex
Property Symbol Type
Position ~p (Float, Float)

Normalized Travel Direction ~d (Float, Float)
Depth Below Surface h Float
Wavenumber k Float
Phase Speed c Float
Group Speed cg Float

Previous Position ~p′ (Float, Float)

Previous Normalized Travel Direction ~d′ (Float, Float)
Previous Wavenumber k′ Float
Previous Phase Speed c′ Float
Previous Group Speed c′g Float
Within Bounds Flag N/A Boolean
Moving Away Flag N/A Boolean
Reflection Depth N/A Integer

Table 2: The Vertex Data Structure

Segment
Property Symbol Type
Amplitude a Float
Energy Respecting Amplitude aD Float
Previous Amplitude a′ Float
Previous Energy Density D′ Float
Previous Length L′ Float
Degenerate Flag N/A Boolean
Inverted Amplitude Flag N/A Boolean

Table 3: The Segment Data Structure

The division of wave parameters between Vertex and Segment where made to
facilitate the integration scheme described in section 4.2.6.

The Within Bounds Flag and Moving Away Flag are used to keep track of where
a vertex is in relation to the extents of the water surface. If a vertex is not within
bounds and it is moving away, it is removed from the simulation. The Reflection
Depth value counts the number of times a vertex has been reflected off the shore and
is analogous to the recursion depth value used in conventional ray tracing of light
rays for image generation. The Degenerate Flag is used to denote segments that are
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no longer a good fit for the simulation and are about to be removed. The Inverted
Amplitude Flag is used to keep track of the sign of the amplitude of a segment. An
explicit flag makes computations involving amplitude and energy density simpler
and results in more readable code.

4.2.5 The Simulation Step

The simulation step propagates the wavefronts across the water surface and records
wave data onto the coarse mesh whenever a wavefront segment passes over a coarse
mesh vertex. The wave data samples are connected by chains stored on the coarse
mesh edges. When all wavefronts have been propagated, the chains are combined
into wave overlaps stored on the coarse mesh triangles. Finally, the coarse mesh
triangles form the coarse mesh that is used as the input to the rendering step.

The simulation follows a simple procedure:

1. Propagate wavefronts forward in time

2. Record wavefronts onto coarse mesh

3. If no wavefronts are left, end the simulation; otherwise return to step 1

The propagation step is described in Section 4.2.6 and the recording step is de-
scribed in Section 4.2.8.

4.2.6 Wavefront Propagation

The wavefront propagation step consists of the following 12 sub-steps. Each wave-
front in the simulation is handled, in order, within each sub-step.

1. Clean up covered edges

2. Remove degenerate segments

3. Maintain wavefront resolution

4. Compute wavenumbers

5. Conserve energy

6. Compute phase speeds

7. Handle refraction

8. Integrate position

9. Check within bounds

10. Compute depths

11. Handle reflection

12. Identify degenerate segments

The remainder of this section describe the details necessary to robustly implement
the wavefront propagation.
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Clean up covered edges Each wavefront stores the set of coarse mesh edges that
it covers at any given movement. A wavefront covers a coarse mesh edge if any of
its segments intersect the edge.

In this step, the set of covered edges is iterated and any edge the wavefront no
longer covers is removed from the set.

Remove degenerate segments This step iterates the list of segments and removes
all segments that are marked as degenerate. A segment is marked as degenerate in
the Identify degenerate segments step and may become degenerate for a number
of different reasons. For example, any segment that moves away from the water
simulation area is marked as degenerate.

If a wavefront does not contain any segment after this step, it is removed from
the simulation.

Maintain wavefront resolution In order to reliably simulate a wavefront, a con-
stant spatial resolution must be enforced as it is propagated across the scene. If the
resolution is insufficient, the piecewise linear representation will poorly represent the
true shape of the wavefront.

Previous simulation methods keep the resolution constant in world space [Gonzato
and Le Saëc, 1997]. This works well for slowly expanding or contracting wavefronts
where neighboring vertices are moving in roughly the same direction. However, as
the method does not take the curvature of the wavefront into account, it performs
poorly when there are sharp changes in travel direction or kinks in the wavefront.
In such cases, the wavefront will be under-sampled and its motion unpredictable.

A common problematic case is when an initially straight wavefront develops a
swallowtail pattern as it passes through a local low speed region (See Figure 2). In
this case, two kinks will develop on either side of the slow moving center-section
of the wavefront as the outer edges fold over it. There will be large differences in
the travel direction of neighboring vertices that lie on either side of a kink, and the
sharp corner will be poorly represented if the resolution is held constant in world
space.

To solve the problem, the observation that a wavefront with kinks in world space
becomes a smooth bicharacteristic strip when it is transformed into reduced phase
space [Osher et al., 2002, Hauser et al., 2006] is used and the wavefront resolution is
held constant in reduced phase space. See Figure 5 for an illustration of a wavefront
in world space and its corresponding shape in reduced phase space.
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Figure 5: An illustration of a wavefront in world space (dark gray curve) and its
corresponding shape in reduced phase space (red curve). Note that the
wavefront does not self-intersect nor display kinks in reduced phase space.

First, each vertex position ~x is lifted to reduced phase space:

~xRPS =
(
xx xy α arccos(dx) sign(dy))

)T
,

where α is a normalizing scaling factor and

sign(x) =

{
1 x ≥ 0

−1 x < 0
.

Then, for each segment, the minimum distance between its 2 vertices in three-
dimensional reduced phase space is determined while taking the periodicity of the
z-coordinate into account.

Let δ denote the ideal world space distance between wavefront vertices. If the
length of a segment in reduced phase space is larger than 1.5 δ, the segment is
subdivided to two segments by inserting a mid-point vertex. If the segment length
in reduced phase space is below 0.5 δ, it is collapsed and the two vertices making
up the segment are replaced with a mid-point vertex. The collapse removes the
original segment and connects its two adjacent segments together. In both cases,
linear interpolation is used to generate the state of the new vertex. See Figure 6 for
an illustration of segment subdivision and collapse.
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Figure 6: An illustration of segment subdivision and collapse during wavefront prop-
agation. A single wavefront is shown over four consecutive time steps.
Solid dark gray circles and lines represent wavefront vertices and segments
respectively. Dashed gray arrows indicate travel paths for the vertices.
Green and red arrows indicate the addition and removal of a mid-point
vertex during segment subdivision and collapse respectively.

The α scalar in the transform to reduced phase space determines the importance
of wavefront curvature in the resolution measurement. When α = 1, a difference of
1 radian in the propagation direction of two neighboring vertices will weigh equal
to 1 unit of spatial separation. Increasing α will increase the sampling resolution of
curves in the wavefront. Setting α = 0 reduces the measurement to world space and
the tessellation behavior to that of previous methods. In practice, a value of α = 2
was found to be keep wavefronts well-formed.

Compute wavenumbers As the wavefront is propagated across the water surface,
the water depth, h, at each vertex changes to reflect the distance to the seabed at
the vertex position, ~p. When the depth changes, the wavenumber of a wave must
change according to the dispersion relation (Equation 3) and since the depth is not
uniform across the wavefront, each vertex has its own wavenumber.

This step computes the wavenumber, k, of each vertex given its current water
depth, h, using the fixed-point iteration scheme proposed by Jeschke and Wojtan
[2015]. As the wavenumber, k, is related to the wavelength, λ, by λ = 2π/k, changing
the wavenumber is analogous to changing the spatial rate of repetition of a wave.

First, the phase speed c(k, h) given the current wavenumber, k, and water depth,
h, is computed using Equation 4. Next, the wavenumber, k, is updated according
to k := ω/c(k, h) from Equation 2. The two steps are iterated until k convergences.
In practice, 20 iterations were sufficient.

Conserve energy This step conserves the energy stored in the wavefront as it
stretches and contracts over time.
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First, the group speed, cg, of each vertex is approximated by finite differences of
Equation 3:

cg :=
ω(k + ∆k, |h|)− ω(k, |h|)

∆k
,

with ∆k = 10−4.
Then, the segments are updated in the following manner: First, the current and

previous group speed of the segment, ĉg and ĉ′g, is computed by averaging the group
speeds of the two vertices. Second, the world-space length L of the segment is
determined. Third, the energy density is computed:

D :=
ĉ′g
ĉg

L′

L
D′.

Fourth, the wavenumber of the segment, k̂, is computed by averaging the wavenum-
ber of the two vertices. Fifth, the amplitude is calculated:

a :=

√
2D

ρg + σk̂2
.

Finally, the wavelength of the segment, λ̂ = 2π/k̂, is multiplied with the Max
Amplitude/Wavelength Ratio and the average depth of the two vertices, ĥ, is mul-
tiplied with the Max Amplitude/Depth Ratio in order to yield amax steepness and
amax depth respectively. If a > amax steepness, the waves are steep enough to break
and should tumble over themselves in a non-linear fashion in order to dissipate en-
ergy. However, as the simulation is based on linear wave theory that is not able to
capture this phenomenon, energy is simply removed from the simulation by setting
a := amax steepness and recalculating the energy density using Equation 6. At this
point, the Energy Respecting Amplitude is set to the current amplitude aD := a.
Next, if a > amax depth, the wave will with high probability contribute to bring the
water surface down below the seabed when the water is rendered. As this is likely
a temporary problem caused by a sudden spike in the underlying terrain height,
the energy density is left unchanged and only the amplitude is clamped by setting
a := amax depth. This behavior is not realistic but it increases the lifetime of the
wavefronts and lets them reach further inland while preventing the resulting waves
from intersecting the terrain, which increases the overall perceived quality of the
simulation.

Note that the amplitude is calculated from the energy density each time step and
only used when the wavefront is recorded onto the coarse mesh. Thus, clamping the
amplitude does not influence the future of the simulation.

Compute phase speeds In this step, the phase speed c of each vertex is updated
according to Equation 2, c = ω/k, where ω is the angular frequency of the wavefront
and k the most recent wavenumber of the vertex.

Note that this is the analytical phase speed c(k, h) computed in the last iteration
of the fixed-point iteration scheme in the Compute wavenumbers step.
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Handle refraction In order to capture wave refraction, wavefront vertices refract
as they pass contour lines in the underlying water depth field [Fournier and Reeves,
1986, Ts’o and Barsky, 1987, Gonzato and Le Saëc, 1997, Jeschke and Wojtan,
2015].

The gradient of the seabed, ∇h, is evaluated at the position of each vertex. If
|∇h(~p)| > 10−2, Snell’s law is used with the previous phase speed, c′, and the new
phase speed, c, to determine the new propagation direction of the vertex:

~d :=

{
~n
√

1− s2 + ~t s |s| ≤ 1
~d− 2(~d · ~n)~n |s| > 1

,

where

~n =

{
∇h(~p)/|∇h(~p)| ~d · ∇h(~p) ≥ 0

−∇h(~p)/|∇h(~p)| ~d · ∇h(~p) < 0
,

~t =
(
−ny nx

)T
,

s =
c

c′
~d · ~t.

Note that the normal ~n always point in the direction of ~d and that ~d is reflected
along ~n if total internal reflection occurs (|s| > 1).

Integrate position In this step, the vertex positions are integrated forward in time
using simple Euler integration:

~p := ~p′ + ~d c∆t.

More advanced integration schemes could be used but Euler integration proved
to work well in practice.

Check within bounds Since the vertices have been moved to new locations in the
previous step, their state flags must now be updated.

Each vertex position is checked against the two-dimensional oriented bounding
box of the focus area. The focus area is a part of the water surface in which one
would like the wavefronts to start refract due to changes in depth. Outside the focus
area, waves are assumed to be deep water waves. If no focus area is desired, the
oriented bounding box of the focus area is set to that of the whole water surface.

The Within Bounds Flag is set to true if the vertex is inside the oriented bounding
box. The Moving Away Flag is set to true if the vertex is not within bounds and
its direction is pointing away from the oriented bounding box.
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Compute depths In this step, the water depth, h, of each vertex is updated. In
order for newly created wavefronts to hold their shape until they have entered the
simulation area, the evaluation of water depth depends on the state flags of the
vertices. The update is performed in two passes.

In the first pass, the water depth, h, is updated for all vertices that are within
bounds, i.e., whose Within Bounds Flag is set to true. For a given vertex, the world
is queried for the water depth, h, at ~p.

In the second pass, vertices that are not within bounds are considered. For each
such vertex, the water depth, h, is set to that of the nearest vertex, by index, along
the wavefront that is within bounds. If no such vertex exists (no vertex on the
wavefront is within bounds), the water depth, h, is set to a maximum value that
corresponds to the depth in deep water, hmax = 102.

Handle reflection In order to capture waves reflecting off different obstacles in the
world, wavefronts are reflected when they pass the shoreline, defined by h = 0. See
Figure 7 for an image of a wavefront reflecting off the shoreline in the simulation.

Figure 7: A wavefront reflecting off the shoreline within the simulation. Multiple
time steps of the wavefront are shown transitioning from green to red with
increasing phase. The coarse triangle mesh is shown in black. Underneath,
the resulting water surface produced by the rendering step is shown in blue.

In order to limit the number of wavefronts and improve performance of the simu-
lation and rendering step, each vertex keeps an internal counter of how many times
it has reflected and loses its ability to reflect once the counter exceeds a set limit.
In practice, the limit was set to 6 reflection bounces.

The reflection handling is performed in two passes. In the first pass, all vertices
of the wavefront are iterated. The position ~p and the position in the previous time
step ~p′ are used as arguments in a line-cast query of the world. If the line intersects
the shoreline, the vertex is temporarily marked as reflected and updated with:
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~prefl := ~p− 2((~p−~i) · ~n)~n,

~drefl := ~d− 2(~d · ~n)~n,

~p′refl :=~i,

~d′refl := ~drefl,

hrefl := h(~i),

Reflection Depthrefl := Reflection Depth + 1,

where~i and ~n is the intersection point and normal of the line-cast. Internally, the
normal is set to the normalized gradient of the terrain at the point of intersection,
~n = ∇h(~i)/|∇h(~i)|.

In the second pass, mid-point vertices are inserted between segment vertex pairs
in which one of the vertices reflects while its neighbor does not in order to better
represent the kink in the wavefront that appears in such cases. See Figure 8 for an
illustration. The mid-point vertices created during one time step should separate
the wavefront into partitions in which the Reflection Depths of the vertices are equal
and distinct from the vertices of neighboring partitions. If a single mid-point vertex
is created during one time step, all vertices to the right of this vertex will have
reflected one more time than the vertices to the left of it, or vice versa depending on
from which direction the wavefront hit the shoreline. As the amplitudes of reflecting
waves are inverted and the mid-point vertices split each segment that intersects the
shoreline into two new segments (that lie on either side of the intersection), they also
serve the purpose of clearly defining which segments should have their amplitude
inverted.
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Figure 8: An illustration of reflection during wavefront propagation. A single wave-
front is shown over three consecutive time steps. Solid dark gray circles
and lines represent wavefront vertices and segments respectively. Vertex
and segment positions before reflection handling are shown in dashed light
gray. Red circles denote mid-point vertices created when a vertex is re-
flected while its neighbor is not.

Thus, a mid-point vertex is created and inserted in between vertex A and vertex
B of segment S of a given segment if A was marked as reflected in the first pass
while B was not and Reflection DepthA > Reflection DepthB. The inequality check
is required as a mid-point vertex between A and B should not be created if B
reflected before A in some previous time step. The mid-point vertex is initialized as
a clone of A with the modifications:

~p := ~j,

~p′ := ~p,

h := hB,

where ~j is the intersection point of a line-cast from ~pB to ~pA. The water depth
h is set to that of vertex B in order for the mid-point vertex to travel the same
distance as B in the next time step. When the mid-point vertex is created the
original segment S is split into two segments, P and Q, that are connected to vertex
A and B respectively, in addition to the mid-point vertex. P and Q are initialized
as clones of S with the modifications:

L′P := L′S (1− s),
L′Q := L′S s,

D′P := D′S e,

Inverted AmplitudeP := ¬Inverted AmplitudeS,
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where

s =

{
|(~j − ~pB)|/|(~pA − ~pB)| index of A is less than index of B

|(~j − ~pA)|/|(~pA − ~pB)| otherwise

and e is a constant scalar in the range [0, 1] denoting the amount of energy not
lost in the collision. In practice, e = 0.8 was used.

If both A and B were marked as reflected in the first pass, the geometry of the
wavefront is unchanged and S is updated with:

D′S := D′S e,

Inverted AmplitudeS := ¬Inverted AmplitudeS.

Identify degenerate segments In this step, the segments are iterated and degen-
erate segments are identified. There are three reasons for which a segment may be
flagged as degenerate. If any of them are true, the Degenerate Flag of the segment
is set to true.

First, a segment is marked as degenerate if the wave generated by the segment
is not steep enough, i.e., if aD/λA < Min Amplitude/Wavelength Ratio ∨ aD/λB <
Min Amplitude/Wavelength Ratio is true where λA = 2π/kA and λB = 2π/kB are
the wavelengths of the two vertices of the segment. Note that this is the same
steepness measurement as used in the Conserve energy step. Waves that are deemed
not steep enough have an unperceivable effect on the final water surface and the
removal of these segments is crucial for good performance of both the simulation
and rendering step. In practice, Min Amplitude/Wavelength Ratio = 5 · 10−3 was
used.

Secondly, a segment is marked as degenerate if both of its vertices have left the
water simulation area and are moving away, i.e., if Moving Away FlagA ∧
Moving Away FlagB is true.

Thirdly, a segment is marked as degenerate if any of its vertices are below the
terrain of the world, i.e., if hA < −ε ∨ hB < −ε is true and ε is a small positive
value to account for floating-point precision errors in the Handle reflection step. In
practice, ε = 10−2 was used.

4.2.7 The Chain

In the recording step, wave data samples are recorded onto the coarse mesh in
chains stored on coarse mesh edges. Whenever a wavefront segment passes a coarse
mesh vertex, a wave data sample is constructed and a chain referencing this sample
is created and added to each edge connected to the vertex. A sample stores a
snapshot of the phase, amplitude, phase speed and normalized travel direction of
the wavefront as it moved past the vertex. A chain stores the extent of a wavefront
that has moved past an edge and is used to connect samples that may be safely
interpolated along edges. A chain can have up to two samples associated with it.
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See Table 4 and Table 5 for what is stored in memory for each sample and each
chain respectively.

Sample
Property Type
Vertex Pointer
Phase Float
Amplitude Float
Phase Speed Float
Normalized Travel Direction (Float, Float)

Table 4: The Sample Structure

Chain
Property Type
Wavefront Pointer
Left Vertex Index Integer
Right Vertex Index Integer
Sample Count Integer
Sample 0 Sample
Sample 1 Sample
Side Of Edge Determined Flag Boolean
Side Of Edge Positive Flag Boolean

Table 5: The Chain Structure

Let a vertex vi on a wavefront be covered by a chain if the chain’s Wavefront
pointer references the wavefront and Left Vertex Index ≤ i ≤ Right Vertex Index.
A determined chain is a chain in which all wavefront vertices covered by the chain
are located on one side of the line spanned by the coarse mesh edge the chain belongs
to. Determined chains are usually created if the wavefront is parallel to the coarse
mesh edge as the chain is created. An undetermined chain is a chain in which at
least two of the wavefront vertices lie on opposite sides of the line spanned by the
coarse mesh edge the chain belongs to. Undetermined chains may be created when a
wavefront is perpendicular to a coarse mesh edge and a wavefront segment intersects
the coarse mesh edge as it passes a coarse mesh vertex. As soon as a chain becomes
determined, the Side Of Edge Determined Flag is set to true and the Side Of Edge
Positive Flag is set to true if the covered wavefront vertices lie above the coarse
mesh edge, otherwise it is set to false. A point ~p lies above a coarse mesh edge if
(~p− ~o) · ~n > 0, where ~n is the counter-clockwise normal of the edge and ~o is a point
on the edge. A point lies on the correct side of a coarse mesh edge with respect to
a determined chain if the point lies above the edge and the Side Of Edge Positive
Flag is set to true or if the point does not lie above the edge and the Side Of Edge
Positive is set to false. Once a chain has been determined its flags are fixed and the
chain cannot become undetermined or change side unless it is merged with another
chain.
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When a chain with at least one sample associated with it is removed from a coarse
mesh edge, it is saved in a list of finished chains that are stored on the edge. It is
crucial to save all chains that contain samples, no matter the situation in which they
are removed, since there are always several chains being created (on multiple coarse
mesh edges) referencing the same sample and if any single one of them is saved
while another is not, there will be a discontinuity in the water surface. Finished
chains are immutable and are only used as input to the final step of the coarse mesh
construction procedure where they are combined into wave overlaps, as described in
Section 4.2.9.

4.2.8 Wavefront Recording

The wavefront recording step consists of the following 6 sub-steps. Each wavefront
in the simulation is handled, in order, within each sub-step.

1. Update map of all covered edges

2. Validate existing chains

3. Create new chains

4. Expand determined chains

5. Merge overlapping chains

6. Remove finished chains

See Figure 9 for an overview of the whole procedure. The remainder of this section
describe the details necessary to robustly record wavefronts.

(a) Create new chain (b) Expand determined chain

(c) Create new chain (d) Expand determined chains

Figure 9: An overview of how chains are used to track a wavefront across a coarse
mesh edge over two consequtive time steps.

31



Update map of all covered edges As the later steps are based on manipulating
the chains of the coarse mesh edges, a map of all edges currently covered by any
wavefront is constructed by taking the union of the Covered Mesh Edges sets of all
wavefronts.

Validate existing chains In this step, the chains of all covered edges are updated
so that they respect the current state of the wavefronts in the scene.

First, the Left Vertex Index and Right Vertex Index of all chains are clamped
to lie within the range of the vertices of the respective wavefront. Secondly, all
undetermined chains are tested to see if they qualify as determined chains. Any
chain that qualifies as determined is made determined as described in Section 4.2.7.
Thirdly, the covered vertex range of each determined chain is shrunk, if possible
and by one vertex at a time, until all covered vertices are on the correct side of the
coarse mesh edge. At last, all determined chains that do not lie on the correct side
of the coarse mesh edge are removed.

Create new chains As the positional update of the wavefronts is discrete, the
wavefront recording step must determine if a wavefront passes over any coarse mesh
vertex as it is swept from its configuration in the previous time step to its configu-
ration in the current time step.

Inverse bilinear interpolation [Quilez, 2010] is used to test if a segment overlaps a
coarse mesh vertex. If an overlap is found, a sample is created and the coefficients s
and t of the inverse bilinear interpolation are used to interpolate the values for the
sample from the two time steps of the segment. Then, for each coarse mesh edge
connected to the overlapped vertex, a chain referencing the new sample is created.
See Figure 10 for an illustration of the creation of a chain for a single coarse mesh
edge.
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Figure 10: An illustration of the creation of a determined chain (red curve) for a
single coarse mesh edge as a wavefront segment path overlaps a coarse
mesh vertex.

In addition, determined chains containing no samples are created whenever wave-
front vertices intersect coarse mesh edges as they are swept from their configuration
in the previous time step to their configuration in the current time step. These
chains are only created because they may bridge gaps between undetermined chains
(that are unable to expand) in the Merge overlapping chains step. See Figure 11 for
an illustration of a configuration where this is useful.
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Figure 11: An illustration showing a configuration for which intersection tests be-
tween wavefront vertex paths and coarse mesh edges are useful. Two
undetermined chains (red curves) are created as the two outermost wave-
front segment paths overlap the two coarse mesh vertices of the edge.
The undetermined chains are unable to expand and merge before be-
ing removed. In order to bridge the gap between the two chains, another
chain (orange curve) is created when the paths of the 3 innermost vertices
intersect the edge.

Expand determined chains In this step, the vertex coverage of determined chains
are expanded to the left by decreasing the Left Vertex Index and to the right by
increasing the Right Vertex Index. If a vertex that is not on the correct side of
the coarse mesh edge is encountered in the direction of expansion, the expansion
stops in that direction. Once the expansion in both directions have stopped, the
procedure is done.

Merge overlapping chains Once a wavefront has travelled across two vertices
that are joined by an edge in the coarse mesh, the edge will contain two chains,
each referencing one sample. If the two samples originated from different ver-
tices, the vertex coverage of the two chains touch (Right Vertex IndexA + 1 <
Left Vertex IndexB ∨Left Vertex IndexA−1 > Right Vertex IndexB) and the wave-
front does not intersect the edge along the union of the vertex coverage, the two
sample values may be interpolated because the wavefront cleanly moved across the
whole edge. In this case, the two the chains are merged into one chain containing
the two samples. Likewise, if a chain containing no sample is merged with a chain
containing one sample, the resulting chain chain will contain one sample. However,
two chains with two samples each are not allowed to merge because they already
encode a wavefront moving from one vertex to another and this is the limit of the
linear approximation used. The merging procedure is performed for each coarse
mesh edge, one wavefront at a time, and continues until it is no longer possible to
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merge any two chains.
Note that two chains with different notions of ”correct side” may be merged if

the wavefront moves perpendicularly to the coarse mesh edge and zig-zags back and
forth before leaving the edge. The notion of correct side is only used to remove
chains for which the wavefront moves back the same way it came before passing
another coarse mesh vertex.

When two chains A and B are merged, they are replaced with a new chain where

Wavefront := WavefrontA

Left Vertex Index := min(Left Vertex IndexA,Left Vertex IndexB)

Right Vertex Index := max(Right Vertex IndexA,Right Vertex IndexB)

Sample Count := Sample CountA + Sample CountB

Sample 0 :=


Sample 0A Sample CountA = 1

Sample 0B Sample CountA = 0∧
Sample CountB = 1

Sample 1 :=


Sample 0B Sample CountA = 1∧

Sample CountB = 1

nothing otherwise

Side Of Edge Determined Flag :=



true (DeterminedA ∧DeterminedB ∧
SideA = SideB)∨
(DeterminedA ∧ ¬DeterminedB)∨
(¬DeterminedA ∧DeterminedB)

false otherwise

Side Of Edge Positive Flag :=


SideA DeterminedA

SideB ¬DeterminedA ∧DeterminedB

false otherwise

Remove finished chains In this step, any chain whose wavefront does not intersect
the respective coarse mesh edge is removed.

4.2.9 Combining Chains on Edges Into Wave Overlaps on Triangles

In order to be able to interpolate sample values across coarse mesh triangles, finished
chains from the edges of a triangle are combined into wave overlaps for that triangle.
This is done as single-valued functions along coarse mesh edges are combined into
single-valued functions within coarse mesh triangles by Jeschke and Wojtan [2015].
The finished chains with 1 and 2 samples presented in Section 4.2.8 are equivalent
to the incomplete and complete edges described by Jeschke and Wojtan [2015].

See Figure 12 for a graphical explanation of the procedure and Table 6 for what
is stored in memory for each resulting wave overlap.
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(a) 3 chains with 2 samples each combine into 1 wave overlap

(b) 1 chain with 2 samples and 2 chains with 1 sample each
combine into 2 wave overlaps

Figure 12: Two cases of how 3 chains from 3 coarse mesh edges can be combined
into wave overlaps for the coarse mesh triangle. Red arrows denote the
normalized travel direction of the samples that are shared between the
chains and indicate how the wavefront moved passed the vertices when the
samples were created. The red x denotes a missing sample. A filled black
circle indicates that the amplitude from the sample is used for that corner
in the wave overlap. A hollow black circle indicates that an amplitude of
zero is used for that corner in the wave overlap. A dashed line indicates
that the missing sample is replaced with extrapolated values from the
existing sample in the wave overlap. a) All 3 chains contain 2 samples
each and reference the same 3 samples, indicating that the wavefront
moved fully past the triangle. A single wave overlap is recorded. b) 1
chain with 2 samples and 2 chains with 1 sample each reference the same
2 samples, indicating that the wavefront moved passed only one edge
before being removed or reflected. Two wave overlaps are recorded.
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Wave Overlap
Property Type
Angular Frequency Float
Phase Float[3]
Amplitude Float[3]
Phase Speed Float[3]
Normalized Travel Direction (Float, Float)[3]

Table 6: The Wave Overlap Structure

First, wave overlaps that represent wavefronts that moved fully past coarse mesh
triangles are created (Figure 12a). For each coarse mesh triangle, all combinations
of 3 chains with 2 samples each from the 3 edges of the triangle are found. A wave
overlap is then created for each combination where the 3 chains share the same 3
samples.

Secondly, wave overlaps that represent wavefronts that partially crossed coarse
mesh triangles are created (Figure 12b). For each coarse mesh triangle, all combi-
nations of 2 chains that were not part of a combination enumerated in the first step
are found. A wave overlap is then created for each combination where a sample is
shared by the chains. The amplitude recorded at the shared sample gets transferred
to the wave overlap whereas the amplitudes of the other corners are set to 0. Missing
samples are approximated by extrapolating the existing sample.

As coarse mesh triangles share the same coarse mesh edges (and consequently
chains), the generated wave overlaps form a continuous surface function with no
discontinuities across the entire coarse mesh.

Sorting wave overlaps by wavelength Once all wave overlaps of a coarse mesh
triangle have been created, they are sorted by wavelength in descending order. For
each wave overlap, the wavelength of the wave is determined at each triangle vertex i,
λi = 2πci/ω, and the minimum of the three values is used for the sorting comparison.
Since the wavelength of the wave can not be more extreme inside the triangle than
at any of its vertices when linear interpolation is employed, the minimum value gives
a good measurement of the shortest wavelength across the entire wave overlap.
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4.3 Rendering

The next section will describe the rendering step and how the simulation data stored
in the coarse mesh is used to displace and render the water surface. The focus will be
on achieving the best possible performance on current generation graphics hardware.

In order to render the water surface using the graphics card (GPU), the surface
must be decomposed into a set of triangles. The number of triangles pushed to the
GPU will partly determine the performance of the rendering step and excessive use
of triangles will leave little computational resources to the rest of the virtual world.
In a production environment, the water rendering subsystem cannot use a majority
of the typical 16 ms time budget designated to rendering a single frame (with a 60 Hz
update frequency target). Thus, care must be taken when constructing the water
surface geometry so that only visible triangles are pushed to the GPU. In addition,
the screen space size of the triangles should be approximately constant across the
water surface so that the image quality is uniform across the screen and so that no
single area of the screen is a computational bottleneck.

The coarse mesh constructed in the simulation step might seem to be a natural
choice for rendering the water surface. For simplicity and compatibility with the
previous water rendering algorithm used by Frostbite [2017], a world space aligned
quadtree was used instead. See Section 7.1 for a discussion on the subject.

4.3.1 Water Surface Geometry

In order to construct the vertices and triangles of the water surface geometry, a world
space aligned quadtree is adaptively subdivided with respect to the view frustum
every frame. Each leaf node in the tree contains a grid of 162 cells (172 = 289 vertices,
2 · 162 = 512 triangles) that are rendered using the unique world-space transform
of the leaf node. As the tree is adaptively subdivided, different leaf nodes will have
different scales and the resolution of the water surface geometry will vary spatially
in world space. See Figure 13 for an abstract illustration of the tree generation.
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Figure 13: An illustration of the world space aligned quadtree, as seen from above,
that is used to generate the water surface geometry. The view frustum is
shown in red and the leaf nodes of the quadtree as gray boxes. Note that
there are leaf nodes at different spatial scales which gives rise to spatially
varying resolution of the water surface.

A node in the tree is subdivided if the world space size of a triangle is larger
than the approximate world space size, in the horizontal or vertical direction, of
rmin pixels at the same distance from the camera. In practice, rmin = 4 pixels was
used which yields surface triangles no larger than 4 pixels in screen space. When no
node of the quadtree can be subdivided further, the resulting vertices and triangles
of the leaf nodes form a flat, adaptively tessellated, water surface across the virtual
scene.

The world space aligned quadtree was chosen over a projected grid [Johanson
and Lejdfors, 2004] approach because of its inherent spatial persistency. In a world
space quadtree, it is probable that a vertex on the water surface exists in multiple
subsequent frames of an animation, even if the view frustum is moving, and this
coherency can be used to optimize the height-lookup of the water surface.

In contrast, when using a projected grid, the positions of vertices projected onto
the water surface are very sensitive to movement of the view frustum and there is
no coherency in world space vertex positions between frames. Furthermore, if the
projected grid is not very finely tessellated, movement of the view frustum can cause
rolling motions on the water surface as the sampling points move in world space,
even if the Nyquist limit is respected.

See Figure 14 for a wireframe view of the resulting water surface.
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(a) rmin = 16

(b) rmin = 4

Figure 14: A wireframe view of the generated water surface. The structure of the
world space aligned quadtree can be seen where there is a resolution
difference between adjacent leaf nodes, i.e., where leaf nodes at different
tree depths are adjacent. Note that the vertical component of the screen
space triangle size is very small in the distance due to the square node-
based subdivision scheme employed. See Section 6 for a discussion on the
subject.
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4.3.2 Evaluating The Simulation

The next step is to evaluate the simulation by offsetting the vertices on the water
surface according to the wave overlaps stored on the coarse mesh triangles. Com-
puting the vertex offset of a single vertex according to the simulation is denoted a
height-lookup. Once the entire water surface has been evaluated for a given anima-
tion frame, the water surface can be rendered.

The simplest way of evaluating the simulation for a given animation frame is to
perform height-lookups for all vertices in all leaf nodes of the quadtree at once.
However, because of the high number of total vertices on the water surface and
the high number of wave overlaps required to reach the desired level of quality,
this update scheme is too performance intensive to be used in practice on current
graphics hardware.

Staggered update scheme To improve performance, the vertices of the water
surface are evaluated using a staggered update scheme at a low update frequency.
A staggered update scheme reduces the number of vertices that need to be updated
every frame by evaluating different vertices every frame according to some pre-
defined pattern.

As the simulation data stored in the coarse mesh may be evaluated at any point in
time for any world space position independently of previous state, a height-lookup
can be performed for any vertex independently of any other vertex on the water
surface. This makes it possible to evaluate vertices in a staggered fashion. Further-
more, if the update frequency of the water is lower than the update frequency of
other aspects of the world, for example the physics engine, it is possible evaluate
each vertex at two points in time and then linearly interpolate between the two
height values in order to fill in the missing frames and give the impression that the
entire virtual world is updated at the same rate.

Vertex displacement buffer In order to implement a staggered update scheme,
the offset values computed for a set of vertices during a frame must be accessible in
subsequent frames when other vertices are evaluated. A persistent vertex displace-
ment buffer is used to keep track of the offsets of all vertices on the water surface. A
leaf node that exists for several frames occupies a fixed set of 289 elements, denoted
a slot, in the vertex displacement buffer.

After the quadtree is constructed for a given frame, the leaf nodes of the quadtree
are iterated and compared against the leaf nodes of the quadtree of the previous
frame. If a new leaf node that did not exist in the previous frame is encountered, it
is assigned a free slot in the vertex displacement buffer. If a leaf node that existed
in the previous frame no longer exists in the current frame, its slot in the vertex
displacement buffer is freed and the data stored in the slot remains unused and
stagnant until the slot is assigned to a new leaf node.

In addition, the dynamic buffers required to evaluate and render the water surface
are filled as the list of leaf nodes are iterated.
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Render buffer pool Since the number of leaf nodes in the quadtree varies on a
frame-by-frame basis, a render buffer pool is used to better store the data needed for
the visible leaf nodes on any given frame. The render buffer pool consists of a list
of groups, each with its own set of render buffers capable of representing a number
of leaf nodes. In practice, each group is able to accommodate 256 leaf nodes. When
a new leaf node is encountered and there are no free slots available in any existing
group, a new group is created and added to the render buffer pool and the new leaf
node is assigned to the first slot in the new group. In a similar fashion, the list of
groups may be defragmented and trimmed if the slot capacity has been significantly
higher than the average number of leaf nodes for a number of subsequent frames.
Using this render buffer pool, the maximum graphics memory wasted is bounded to
the space occupied by 256 leaf nodes.

Render buffer group Each render buffer group contains one vertex displacement
buffer, one slot index buffer, one position buffer, one stride node index buffer and
one full node index buffer. The vertex displacement buffer is persistent across frames
whereas the others are dynamically constructed every frame. See Figure 15 for a
schematic view of a single render buffer group and an illustration of how the indices
of one buffer reference elements of another.

Vertex Displacement Buffer

Each slot contains the vertex 
offsets for one leaf node and 
occupies 289 * 16 bytes in the 
vertex displacement buffer.

LN LN LN

LN LN

LN LN LN LN

LNLN
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Position Buffer
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Full Node Index Buffer
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Figure 15: A schematic view of the buffers in one group of the render buffer pool
and the internal references present.

The slot index buffer and position buffer encodes the leaf nodes assigned to the
group. Each element of the slot index buffer references which slot in the vertex
displacement buffer to use for the given leaf node and the corresponding element of
the position buffer encodes the transform of the given leaf node. In addition to the
vertex displacement buffer, these are the only buffers needed to render the water
surface.

The stride node index buffer and full node index buffer are used when the water
surface is evaluated. Since not all vertices of a slot are evaluated during a frame in
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the staggered update scheme, the slots of new leaf nodes must be fully evaluated
when they first appear in order for them not to contain any stagnant data from
any previously assigned and now no longer visible leaf node. This is not a problem
for a leaf node that exists over several frames since they will, by design, keep the
same slot in the vertex displacement buffer throughout all frames. The full node
index buffer is constructed in such a way that each element references an index in
the slot index buffer and position buffer corresponding to a new leaf node and the
stride node index buffer is constructed in such a way that each element references
an index corresponding to a leaf node that have existed for at least one frame.

Compute shader jobs Once the quadtree has been constructed and the render
buffer pool has been updated, a compute shader job is dispatched for each render
buffer group to evaluate its vertex displacement buffer. Once all compute shader
jobs are complete, all visible parts of the water surface have been evaluated and the
water surface as a whole is ready to be rendered.

In addition to all render buffers of the group, the compute shader job takes two
integers as input: the stride count and the stride index. The stride count denotes
the number of stride groups that the vertices of a slot should be divided into. A
stride group is a set of vertices that are all evaluated at the same time. The stride
index denotes which such stride group should be evaluated in the given compute
shader job dispatch.

In order to reduce aliasing artifacts on the water surface, stride groups are chosen
in such a way that the vertices are evaluated in wave-like patterns. Let i be the local
vertex index, 0 ≤ i < 289, of a slot in the vertex displacement buffer. Then, vertex
i belongs to stride group j if and only if the remainder after dividing i by the stride
count is j. Let n denote the number of vertices along one side of a leaf node. When
n is odd, vertices of the same stagger group, that belong to different leaf nodes at
the same scale, will be aligned in world space as long as the stagger count is even
and less than n. See Figure 16 for an illustration of the visual patterns the stride
groups give rise to in world space.
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Leaf Node A Leaf Node B

0 1 2 3 0 1 2 3 0

1 12 2.. ..

Stagger Index:

Stagger Count: 4

Figure 16: An illustration of two adjacent leaf nodes and the visual patterns their
stride groups give rise to in world space.

The time between compute shader job dispatches for a given stride index, denoted
the update interval, decides the times at which to evaluate the water surface at any
given point. The surface is evaluated once at the nearest multiple of the update
interval and the current time, offset by the stride index, backward in time and once
at the nearest multiple of the update interval and the current time, offset by the
stride index, forward in time. See Figure 17 for an schematic view of the timing
schedule.
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Update Interval

Stagger Index: 0 1 2 3

Stagger Count: 4

Current Time

Figure 17: A schematic view of the timing schedule employed in the staggered update
scheme. The red bars denote the time interval dedicated to a given stride
index. At the start of a time interval, height-lookups are performed for
all vertices in the given stride group determining the vertex offsets at the
beginning of the time interval and at the end of the time interval. During
the time interval, the two offset values for each vertex in the stride group
are linearly interpolated.

Update frequency When using the staggered update scheme, one may trigger
compute shader job dispatches every frame, enumerating the possible stride index
values one by one. However, this does not lend itself to a variable frame rate since
previous evaluations assume that the next dispatch happens at a specific point in
time. In practice, the frame rate will vary and the update scheme must be decoupled
from the normal rendering loop.

Thus, the water simulation is run at an update frequency f that is lower than that
of the rest of the virtual world. The update interval is then fixed to 1/f seconds.

In practice, the update frequency of the water simulation is set to f = 8 Hz using
a stagger count of 8. This was the perceived lower limit of the staggered update
scheme as a lower update frequency caused the inherent visual artifacts to become
apparent.

4.3.3 The Height-Lookup

The compute shader job evaluates the water surface at all vertices in a given stagger
group using Equation 1. For each vertex, the geometric offset and surface normal
of the water surface are computed for the two time points given by the staggered
update scheme.

First, the coarse mesh triangle that contains the vertex is found. Then, the wave
overlaps of the found coarse mesh triangle are iterated. For each wave overlap, the
wave parameter values are interpolated to the vertex and the contribution from the
wave overlap to the geometric offset and surface normal are computed for the two
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time points using the wave profile. Finally, the contributions from all wave overlaps
are accumulated and the final geometric offset and surface normal for the vertex is
written to the vertex displacement buffer.

In order to avoid aliasing due to the Nyquist limit, each contribution is attenuated
according to the wavelength of the wave overlap. Since the wave overlaps are sorted
by wavelength in descending order, the iteration terminates whenever the contribu-
tion of a wave overlap is zero due to attenuation. This scheme improves performance
as it limits the compute shader execution time for coarse mesh triangles that are far
away from the camera.

Coarse mesh triangle lookup A top-down 2-dimensional grid implemented as an
index buffer is used to accelerate the lookup of coarse mesh triangles in the compute
shader. The grid covers the water surface and each grid cell contains a reference
to the first element of a linked list of coarse mesh triangles intersecting that cell.
All linked lists are packed into a single 2-value index buffer where the first value
references a coarse mesh triangle and the second value the next element in the linked
list.

Thus, in order to find the coarse mesh triangle containing a 2-dimensional point ~p
on the water surface, the grid cell i containing ~p is first found. Then, the grid index
buffer is queried at i to get the index j referencing an element in the linked list index
buffer. The linked list index buffer is subsequently queried at j for the coarse mesh
triangle tj and the next index nj. If tj contains ~p in the plane, the procedure returns
tj. Otherwise, the next element in the linked list is examined iteratively by setting
j := nj. Finally, if an nj that does not point to another element is encountered,
the end of the linked list has been reached and ~p must lie outside the bounds of the
water surface and the procedure returns nothing.

In practice, a constant grid size of 10242 was used. This results in a grid cell side
length of approximately 4 m in a 16 km2 square-shaped simulation.

Wave filtering In order to eliminate aliasing on the water surface, the Nyquist
limit must be respected when waves are sampled. Thus, the contribution of a wave
overlap to the geometric offset is attenuated and filtered as described by Bruneton
et al. [2010].

The sample size is the maximum world space distance between two vertices on the
water surface and the exact value can be determined from the leaf node scale in the
position buffer. However, if the exact value is used there will be visible discontinuities
on the water surface where leaf nodes at different depths in the quadtree are adjacent.
In order to provide a seamless transition between leaf nodes, the approximate world
space sample size, s, used when filtering is determined by

s =
√

2 min(sx, sy),

where

46



sx =
cx|~v|

|max(~vx/|~v|, ~vz/|~v|)|

sy =
cy|~v|
|(~vy/|~v|)|

cx = 2 tan(fovx/2)
rmin

w

cx = 2 tan(fovy/2)
rmin

h

and ~v is the vector from the vertex to the camera in world space, fovx the horizontal
field of view, fovy the vertical field of view, w the screen width in pixels, h the screen
height in pixels and rmin the desired screen space extent of a triangle (in pixels) on
the water surface as described in Section 4.3.1.

The wavelength used when filtering is the minimum wavelength value stored on
the wave overlap as described in Section 4.2.9.

Wave parameter interpolation In order to evaluate the wave function (Equation
1) at any point within a coarse mesh triangle, the wave parameter values stored in
each wave overlap are interpolated as shown by Jeschke and Wojtan [2015].

First, the barycentric coordinates, ~b, of a point ~p are computed with respect to
the corner points of the triangle as shown by Ericson [2004]. Then, when the wave
overlaps of the triangle are iterated, the three corner values of each wave parameter
are linearly interpolated yielding a value for each wave parameter at ~p:

φ̂ =
(
φ0 φ1 φ2

)T ·~b
â =

(
a0 a1 a2

)T ·~b
ĉ =

(
c0 c1 c2

)T ·~b
~̂d =

[
~d0

~d1
~d2

]
~b

/∣∣∣[~d0
~d1

~d2

]
~b
∣∣∣

where · denotes the dot product.
Side-vertex interpolation [Jeschke and Wojtan, 2015] was also implemented but

not used due to the increased instruction count compared to linear interpolation.

Wave profile A trochoidal wave profile is used to offset the water surface in both
the vertical and horizontal directions as shown by Finch [2004] and Bruneton et al.
[2010]. In contrast to their work, however, waves do not travel at constant phase
speeds and the phase function must be utilized. Given a world space point, (x y z)T ,
on the water surface, the offset point according to the wave profile, ~p, is then:

~p =

xy
z

+
N∑
i=1

d̂ixâi cos(ωiφ̂i − ωit)

âi sin(ωiφ̂i − ωit)

d̂iyâi cos(ωiφ̂i − ωit)

 ,
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where ωi the angular frequency of wave overlap i and ~̂di the interpolated direction,
âi the interpolated amplitude and φ̂i the interpolated phase of wave overlap i at
(x y z)T . In order to calculate the surface normal at ~p, the partial derivatives of ~p
is first calculated in the x and z directions, resulting in the surface tangent, ~t, and
bitangent, ~b, respectively:

~t =
∂

∂x
~p

=

1
0
0

+
N∑
i=1

−d̂ixâi sin(ωiφ̂i − ωit)

âi cos(ωiφ̂i − ωit)

−d̂iyâi sin(ωiφ̂i − ωit)

ωi
∂

∂x
φ̂i


=

1
0
0

+
N∑
i=1

−d̂ixâi sin(ωiφ̂i − ωit)

âi cos(ωiφ̂i − ωit)

−d̂iyâi sin(ωiφ̂i − ωit)

ωi
d̂ix
ĉi



~b =
∂

∂z
~p

=

0
0
1

+
N∑
i=1

−d̂ixâi sin(ωiφ̂i − ωit)

âi cos(ωiφ̂i − ωit)

−d̂iyâi sin(ωiφ̂i − ωit)

ωi
∂

∂z
φ̂i


=

0
0
1

+
N∑
i=1

−d̂ixâi sin(ωiφ̂i − ωit)

âi cos(ωiφ̂i − ωit)

−d̂iyâi sin(ωiφ̂i − ωit)

ωi
d̂iy
ĉi

 ,
where ĉi is the interpolated phase speed of wave overlap i at (x y z)T .
The surface normal, ~n, can then be calculated using the cross product:

~n =
~b× ~t
|~b× ~t|

.
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5 Results

The algorithm was tested in two different virtual scenes: an archipelago was used
for testing performance and a depiction of the Mediterranean coastline was used to
assess visual quality in a typical production environment.

The archipelago scene was used to test performance because it provided the largest
possible area for water simulation and only contains terrain in addition to the water.
The Mediterranean coastline scene was used to assess visual quality because it closely
represents a production quality scene, containing photo-realistic terrain, textures
and foliage in addition to the water.

5.1 Performance

The performance of the algorithm was assessed using a virtual scene consisting of
a group of islands [DICE, 2017] and water covering an area of 16 km2. The focus
area of the simulation was set to 1.2 km2 and centered around a set of islands in the
center of the scene. Two wavefront generators where used to simulate a 5 m/s wind
from the North and a 10 m/s wind from the South. The resulting seascapes collide at
open sea to the East and West of the focus area and produce violent sea conditions in
these areas. The islands in the focus area shelter the immediate surroundings to the
North and South from the waves coming from the opposite direction and moderate
sea conditions representative of the wind speed of the respective wavefront generator
can be observed. In between the islands, the water is sheltered from all sides and
the surface is nearly undisturbed. See Figure 18 for an overhead view of the scene
and Table 7 for a summary of the simulation parameters used and output of the
algorithm.

Figure 18: The virtual scene used for performance measurements. The water plane
covers an area of 16 km2 (coarse black triangles) with a focus area of
1.2 km2 (dense black triangles).
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Simulation specifications
Total area 16 km2

Focus area 1.2 km2

Wavefront generators 2
Wavefronts simulated 40
Min Amplitude/Wavelength Ratio 0.005
Max Amplitude/Wavelength Ratio 0.07
Simulation time 164 minutes
Coarse mesh triangles 8408
Max wave overlaps per triangle 146
Average wave overlaps per triangle 34.2
GPU memory occupied by simulation 23 megabytes

Table 7: A summary of the simulation parameters used and the output of the algo-
rithm.

Two hardware configurations were used to test the algorithm: a personal computer
with an Intel Xeon E5-1650 processor and a Nvidia GeForce GTX 970 graphics card
and a Sony PlayStation 4. Performance measurements were recorded from 6 different
viewpoints in the scene, with and without the staggered update scheme enabled. The
frame buffer resolution was 1920 × 1147 on the personal computer and 1600 × 900
on the PlayStation 4. See Figure 19 for screenshots of the 6 different viewpoints.
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(a) Open sea South of island cluster (b) Southern inlet of island cluster

(c) Violent sea East of island cluster (d) Southern shoreline of South island

(e) Calm water in between islands (f) Northern shoreline of North island

Figure 19: Screenshots of the six viewpoints at which performance measurements
were recorded.

The total water surface evaluation time for a given viewpoint can be seen in
Table 8. This corresponds to the total time consumed by the compute shader job
dispatches on the GPU. The coarse mesh triangle lookup time can be seen in Table
9 and corresponds to the time it takes to find the coarse mesh triangle of interest for
all vertices of a given stagger group in the vertex displacement buffer on the GPU,
when using the staggered update scheme. Both of these measurements correspond
to the part of the algorithm that must be executed independently of the number of
screen pixels the water occupies in a rendered frame.

It is clear from these measurements that most time is typically spent accessing the
wave data of the coarse mesh triangle as opposed to looking up the triangle itself.
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However, the coarse mesh triangle lookup time is not an insignificant fraction of the
total and can sometimes amount to approximately half of the time spent.

Total water surface evaluation time (GPU)
GeForce GTX 970 PlayStation 4

Viewpoint Full Staggered (avg) Full Staggered (avg)
A 2.482 0.41 (0.162) 2.997 0.76 (0.833)
B 1.252 0.26 (0.113) 1.537 0.61 (0.667)
C 2.629 0.43 (0.182) 2.952 1.25 (1.187)
D 2.152 0.38 (0.164) 2.737 1.26 (1.179)
E 1.813 0.33 (0.135) 2.146 0.65 (0.697)
F 1.855 0.35 (0.147) 2.184 0.73 (0.794)

Table 8: Total water surface evaluation time on the GPU in milliseconds. Paren-
thesis denote averages over all rendered frames, not only frames where a
stagger update occurs. The average evaluation time is considerably higher
on the PlayStation 4 because it runs at a lower frame rate and a larger
fraction of the frames trigger water surface evaluations. Note that the
evaluation time of the staggered update scheme is close to the expected
theoretical performance gain of 8 times, with a stagger count of 8.

Coarse mesh triangle lookup time (GPU)
GeForce GTX 970 PlayStation 4

Viewpoint Staggered (avg) Staggered (avg)
A 0.13 (0.053) 0.25 (0.264)
B 0.13 (0.053) 0.24 (0.256)
C 0.14 (0.059) 0.28 (0.299)
D 0.15 (0.060) 0.27 (0.290)
E 0.15 (0.062) 0.28 (0.301)
F 0.15 (0.060) 0.27 (0.291)

Table 9: Coarse mesh triangle look-up time on the GPU in milliseconds. Parenthesis
denote averages over all rendered frames, not only frames where a stagger
update occurs. The average evaluation time is considerably higher on the
PlayStation 4 because it runs at a lower frame rate and a larger fraction of
the frames trigger water surface evaluations.

The GBuffer rendering time for a given viewpoint can be seen in Table 10. This
corresponds to the time it takes for the GPU to rasterize all triangles of the water
surface into the GBuffers used by the deferred renderer. The time required varies
depending on the the previous contents of the ZBuffer. In particular, if the vir-
tual scene contains elements in the foreground that occlude the water surface, the
performance impact of rendering the water surface will decrease.
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GBuffer rendering time (GPU)
Viewpoint GeForce GTX 970 PlayStation 4
A 2.103 3.749
B 1.895 2.774
C 2.111 3.474
D 2.046 3.409
E 1.926 3.615
F 1.777 2.497

Table 10: GBuffer rendering time on the GPU in milliseconds

The Quadtree & buffer construction time for a given viewpoint can be seen in
Table 11. This corresponds to the time it takes to build the quadtree and fill the
contents of the dynamic render buffers every frame for one core of the CPU. The job
is scheduled to be executed alongside other independent jobs in order to maximize
processor utilization when multiple cores are available.

Quadtree & render buffer construction time (CPU)
Viewpoint Intel Xeon E5-1650 PlayStation 4
A 1.941 3.434
B 1.522 2.558
C 1.883 3.115
D 1.927 3.348
E 1.923 3.413
F 1.869 3.160

Table 11: Quadtree & render buffer construction time on the CPU in milliseconds

5.2 Achieved Visual Quality

The visual quality of frames generated by the algorithm was assessed using a virtual
scene depicting the Mediterranean coast [DICE, 2017]. One wavefront generator
was used and the wind direction was set to face the coastline.

5.2.1 Overview

See Figure 20 for screenshots of six viewpoints representative of the visual quality
that can be achieved when using the algorithm in a typical production environment.
In order to see the wave patterns produced on a grand scale, Figure 21 shows a
series of screenshots from a top-down perspective as the altitude increases.
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(a) Open sea (b) Violent sea near coastal cliffs

(c) Waves focus in inlet (d) Waves refract around natural jetty

(e) Waves refract around island (f) Waves lining up with bay shoreline

Figure 20: Screenshots of the six viewpoints that are representative of the image
quality of the algorithm when used in a production environment.
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Figure 21: Screenshots from a top-down view as the altitude increases

In practice, there is no visible aliasing. The employed wave filtering effectively
eliminates spatial aliasing and even though a low update frequency is used for the
staggered update scheme, no temporal aliasing was observed.
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Repetition patterns can be observed in areas close to the boundaries of the sim-
ulation where wavefronts have not yet started to diverge due to changes in depth.
However, note that as each coarse mesh triangle can be visually unique, it is pos-
sible to eliminate repetition patterns in theory even close to the boundaries of the
simulation.

In theory, cracks in the water surface geometry are expected in places where leaf
nodes at different depths in the world space quadtree are adjacent since stagger
group indices only line up at the borders of adjacent leaf nodes that have the same
world space size. In practice, no visible cracks in the water surface can be observed.

Visible seams between coarse mesh triangles can be observed if a high frequency
wave is visible in one triangle but gets filtered in an adjacent triangle due to in-
adequate sampling resolution. The reason for this behavior is that the minimum
wavelength value of the three corners of a wave overlap is used when filtering waves
as described in Section 4.3.3 and the wave is not attenuated within the coarse mesh
triangle in which it is visible.

5.2.2 Captured Water Wave Behaviors

The following section illustrates specific wave behaviors that are captured by the
simulation.

Refraction A water wave refracts as it moves from one depth to another and points
on the wave travel at different phase speeds. Within the simulation, a wavefront
refracts if the change in the underlying depth field is significant. See Figure 22 for a
view of a single wavefront developing a swallowtail pattern as it enters a local area
of shallow water.

(a) Simulation step (b) Rendering step

Figure 22: A wavefront refracts to produce a swallowtail pattern as it enters a local
shallow area of the seafloor. a) Multiple time steps of the wavefront are
shown transitioning from green to red with increasing phase. The coarse
triangle mesh is shown in black. The seafloor is shown in gray. b) The
rendered water surface.

Reflection A water wave reflects when it collides with hard surfaces. Within the
simulation, a wavefront reflects when it intersects scene geometry. See Figure 23 for
a view of a single wavefront as it reflects off the shoreline.
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(a) Simulation step (b) Rendering step

Figure 23: A wavefront reflecting off the shoreline within the simulation. a) Multiple
time steps of the wavefront are shown transitioning from green to red
with increasing phase. The coarse triangle mesh is shown in black. The
seafloor is shown in gray. b) The rendered water surface. Note the null
lines that appear where reflected waves cancel each other out.

Dispersion Water waves of different wavenumbers travel at different phase speeds
due to dispersion. Within the simulation, this phenomenon is handled naturally
by the integration scheme used. See Figure 24 for a view of multiple wavefronts
travelling at different phase speeds.

(a) Simulation step (b) Rendering step

Figure 24: Dispersion within the simulation. a) The coarse triangle mesh is shown
in black. Due to the amount of information, wavefront time steps are not
shown. b) The rendered water surface.
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6 Discussion

The proposed algorithm successfully fulfills the aims of the thesis in that it robustly
simulates waves interacting with the terrain in a variety of different virtual scenes
and renders the animated water surface in real-time at good frame rates (more than
60 Hz). Furthermore, the algorithm has proven to be suitable even for very large
scenes as shown in Section 5.

We show how to automatically generate a coarse mesh of good quality, that sample
the simulation accurately with few triangles, given any input terrain using a balanced
Poisson disk radius function and a robust topology-based convex hull algorithm for
constructing the Delaunay triangulation.

Next, we provide a detailed description of how to robustly integrate wavefronts
across the water surface and store wave data on the coarse mesh as first showed by
Jeschke and Wojtan [2015].

The resulting simulation accurately captures wave behaviors that can be observed
for water waves under the high frequency approximation and the lack of diffraction
for wavelengths that are comparable to features in the underlying depth field is not
noticeable in practice. To improve the simulation further, the wavelength indepen-
dent diffraction approximation suggested by Jeschke and Wojtan [2015] could be
implemented.

The wavefront generators worked well for introducing and propagating a specific
sea state from the boundaries of the simulation. However, not all waves are formed
by wind far away and more work can be done on automatically generating wavefronts
for waves originating from local wind conditions. This would extend the use case of
the proposed algorithm to isolated bodies of water such as small lakes or even water
puddles.

For rendering the water surface, we show that a staggered update scheme is fea-
sible even at low update frequencies and that it can effectively improve rendering
performance by a factor of 8. This contribution makes the algorithm suitable for
real-time applications.

The world space aligned quadtree used to construct the geometry of the water sur-
face makes it possible to implement a staggered update scheme. However, the choice
of subdividing nodes uniformly along the x and z axis poses some problems. As can
be seen from Figure 14, the subdivision scheme over-samples the water surface in the
distance. The reason for this behavior is that a node in the quadtree is subdivided
until the sampling resolution is below the world space size of a set number of pixels
(rmin) in the horizontal and vertical direction. When viewing the water surface from
a low altitude, the vertical screen space sampling resolution is often adequate even
at low subdivision levels because of the perspective. However, the horizontal screen
space sampling resolution is not good enough at the same subdivision level and the
nodes are subdivided further. Because of the uniform subdivision scheme used in
the quadtree, this causes the vertical sampling resolution to become extreme and
results in very small water surface triangles and wasted computational resources.
This is particularly bad as the over-sampling occurs primarily in the distance where
the effect of under-sampling might be negligible. In order to improve the system,
a non-uniform subdivision scheme could be explored or one could accept a larger

58



screen space sampling resolution in the horizontal direction and stop subdivision
once adequate resolution is reached in any direction.

For performing height-lookups on the water surface, linear interpolation of wave
parameters proved to be sufficient. The difference between linear and side-vertex
interpolation was not apparent in our test cases because there were often multiple
triangles, piecewise approximating wavefront curvature, in areas where wavefronts
tend to refract as a result of the tessellation scheme employed to construct the
coarse mesh. Thus, the negligible improvement in visual quality provided by the
higher order interpolation scheme did not outweigh the increased instruction count
required.

To completely avoid visible seams between coarse mesh triangles, one should ide-
ally interpolate the wavelength at each corner of a wave overlap and attenuate waves
according to this value when filtering wave overlaps, as opposed to the minimum of
the three values. The stopping criterion can use the minimum value for performance
considerations, but the attenuation should work with the interpolated value in order
to avoid discontinuities in which waves appear on adjacent coarse mesh triangles.

6.1 Cache Coherence

Vertex displacement buffer The persistent vertex displacement buffer is sparse
by construction. As slots are allocated and deallocated the buffer will become frag-
mented with respect to the world space locations of the leaf nodes it references.
The displacement stored for vertices within a leaf node will be close in memory but
slots of leaf nodes that are adjacent in world space might be far apart in the vertex
displacement buffer, or even belong to different render buffer groups entirely.

Ideally, to use the shared memory on the GPU effectively, one would like the
slots of leaf nodes that cover a particular coarse mesh triangle to be in the same
vertex displacement buffer and to be close in memory within the buffer itself. Then,
compute shader threads executing in the same warp and thread group will access
the same wave data and use the shared memory of the thread group more effec-
tively. This is the case if the slots of adjacent leaf nodes are adjacent in the vertex
displacement buffer.

To solve the issue, the vertex displacement buffer should be defragmented in some
way. An idea for a defragmentation routine is to switch the slots of two leaf nodes
in the buffer every frame so that slots become gradually sorted by the distance to
the viewer.

Static coarse mesh The proposed algorithm as outlined is this thesis and by
Jeschke and Wojtan [2015] considers a static coarse mesh independent of the view
frustum chosen at runtime. Even though the coarse mesh is adaptively tessellated to
handle scale differences, too small coarse mesh triangles are not feasible in practice
because they cause memory access coherency issues when viewed from afar.

For example, consider a long stretch of rugged coastline where the coarse mesh is
finely tessellated. The evaluation of two neighboring vertices on the water surface
(that are executed in the same warp or thread group in the compute shader) might
access widely different wave data if the vertices happen to be located in two different
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coarse mesh triangles. When the rugged coastline is viewed from a distance, a small
screen space area may contain a large number of different coarse mesh triangles and
cause an enormous amount of cache misses. Since accessing wave data is typically
the most performance intensive task of evaluating the water surface (See Section
5.1), incoherent memory accesses can be particularly bad for the performance of the
algorithm.

Note that this is not a problem for small triangles that are close to the viewer
since they occupy a large amount of screen space and thus a large number of vertices
on the water surface geometry.

See Section 7.2 for a potential solution to this problem.
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7 Future Work

7.1 Coarse Mesh As Water Surface Geometry

The coarse mesh tree could potentially be used for rendering, eliminating the need
for the coarse mesh triangle lookup procedure when evaluating the water surface.
As the lookup time can amount to approximately 50% of the total evaluation time in
some cases (See Section 5.1), this would result in increased rendering performance.

Since the coarse mesh is spatially coarse by definition, it would have to be tessel-
lated in a view-dependent manner to be used to directly represent the water surface.
This could be done similarly to how the world space quadtree is tessellated in Sec-
tion 4.3.1. Then, any vertex on the water surface would simply need to traverse the
subdivision tree upwards to find the set of wave overlaps to iterate.

7.2 Coarse Mesh Tree

To solve the cache coherence problem described in Section 6.1, we propose recording
wave parameters in a coarse mesh tree where the tessellation factor can be chosen at
runtime so that each coarse mesh triangle occupies approximately the same screen
space area. Since wave parameters will need to be stored separately for each sub-
division level of a coarse mesh triangle, the approach will be limited by its memory
footprint.

In order to construct the coarse mesh tree, the triangles of a coarse mesh may be
subdivided until they reach a desired detail level. The simulation can then record
wave parameters onto the highest level of detail (LOD) representation in the coarse
mesh tree. Once wavefront propagation and recording is done, finished chains can
be propagated to a lower LOD in the tree by replacing two chains from two coarse
mesh edges that share a sample in the high LOD representation with a single chain
on the single coarse mesh edge in the lower LOD representation. See Figure 25 for
a graphical explanation of the proposed procedure.
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Figure 25: An illustration of how finished chains can be propagated to a lower LOD
in a coarse mesh tree. Consider two coarse mesh edges (green and light
green lines) on a high LOD representation (small triangles) that line up
with a coarse mesh edge on a low LOD representation (large triangle).
If a wavefront moved fully passed the low LOD triangle, there must be
a chain with 2 samples on the green edge and a chain with 2 samples on
the light green edge that share a sample (middle red arrow) in the high
LOD representation. In this case, one can approximate the wave in the
low LOD representation by creating a chain connecting the samples at
the endpoints of the two chains. This procedure can then be performed
recursively to lower LOD representations in the coarse mesh tree.

A coarse mesh tree has the potential of capturing everything from the small ripples
caused by reflections off individual stones on a close-by beach to the impact of large
waves from a roaring sea on a far away shore, without causing massive amounts of
cache misses.
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8 Conclusion

An algorithm for rendering large expanses of water that interact with the terrain
of the virtual scene in real-time was presented. The simulation robustly propagates
and records wavefronts across the water surface in a pre-computation step while
taking the shape of the terrain into account. As a result, the refraction, reflection
and dispersion phenomena of the water waves are captured and the simulation can
accurately represent both deep water waves and shallow water waves. During run-
time, the simulation is evaluated using a staggered update scheme and the water
surface is rendered using an adaptively tessellated world space aligned quadtree.

The staggered update scheme utilizes the observation that the water simulation
can be evaluated at a low update frequency without loss of visual quality and effec-
tively improves the performance by a factor of 8 as the computational workload is
split across multiple frames.

In future work, a coarse mesh tree could be explored in order to improve cache
coherence, which is the perceived bottleneck of the algorithm, and eliminate a lookup
procedure to further improve rendering performance.
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